diff -r 003dff7410c1 -r c92850d2d16c src/HOL/Library/NatPair.thy --- a/src/HOL/Library/NatPair.thy Tue Sep 02 22:20:27 2008 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,134 +0,0 @@ -(* Title: HOL/Library/NatPair.thy - ID: $Id$ - Author: Stefan Richter - Copyright 2003 Technische Universitaet Muenchen -*) - -header {* Pairs of Natural Numbers *} - -theory NatPair -imports Main -begin - -text{* - A bijection between @{text "\\"} and @{text \}. Definition - and proofs are from \cite[page 85]{Oberschelp:1993}. -*} - -definition nat2_to_nat:: "(nat * nat) \ nat" where -"nat2_to_nat pair = (let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n)" -definition nat_to_nat2:: "nat \ (nat * nat)" where -"nat_to_nat2 = inv nat2_to_nat" - -lemma dvd2_a_x_suc_a: "2 dvd a * (Suc a)" -proof (cases "2 dvd a") - case True - then show ?thesis by (rule dvd_mult2) -next - case False - then have "Suc (a mod 2) = 2" by (simp add: dvd_eq_mod_eq_0) - then have "Suc a mod 2 = 0" by (simp add: mod_Suc) - then have "2 dvd Suc a" by (simp only:dvd_eq_mod_eq_0) - then show ?thesis by (rule dvd_mult) -qed - -lemma - assumes eq: "nat2_to_nat (u,v) = nat2_to_nat (x,y)" - shows nat2_to_nat_help: "u+v \ x+y" -proof (rule classical) - assume "\ ?thesis" - then have contrapos: "x+y < u+v" - by simp - have "nat2_to_nat (x,y) < (x+y) * Suc (x+y) div 2 + Suc (x + y)" - by (unfold nat2_to_nat_def) (simp add: Let_def) - also have "\ = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2" - by (simp only: div_mult_self1_is_m) - also have "\ = (x+y)*Suc(x+y) div 2 + 2 * Suc(x+y) div 2 - + ((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2" - proof - - have "2 dvd (x+y)*Suc(x+y)" - by (rule dvd2_a_x_suc_a) - then have "(x+y)*Suc(x+y) mod 2 = 0" - by (simp only: dvd_eq_mod_eq_0) - also - have "2 * Suc(x+y) mod 2 = 0" - by (rule mod_mult_self1_is_0) - ultimately have - "((x+y)*Suc(x+y) mod 2 + 2 * Suc(x+y) mod 2) div 2 = 0" - by simp - then show ?thesis - by simp - qed - also have "\ = ((x+y)*Suc(x+y) + 2*Suc(x+y)) div 2" - by (rule div_add1_eq [symmetric]) - also have "\ = ((x+y+2)*Suc(x+y)) div 2" - by (simp only: add_mult_distrib [symmetric]) - also from contrapos have "\ \ ((Suc(u+v))*(u+v)) div 2" - by (simp only: mult_le_mono div_le_mono) - also have "\ \ nat2_to_nat (u,v)" - by (unfold nat2_to_nat_def) (simp add: Let_def) - finally show ?thesis - by (simp only: eq) -qed - -theorem nat2_to_nat_inj: "inj nat2_to_nat" -proof - - { - fix u v x y - assume eq1: "nat2_to_nat (u,v) = nat2_to_nat (x,y)" - then have "u+v \ x+y" by (rule nat2_to_nat_help) - also from eq1 [symmetric] have "x+y \ u+v" - by (rule nat2_to_nat_help) - finally have eq2: "u+v = x+y" . - with eq1 have ux: "u=x" - by (simp add: nat2_to_nat_def Let_def) - with eq2 have vy: "v=y" by simp - with ux have "(u,v) = (x,y)" by simp - } - then have "\x y. nat2_to_nat x = nat2_to_nat y \ x=y" by fast - then show ?thesis unfolding inj_on_def by simp -qed - -lemma nat_to_nat2_surj: "surj nat_to_nat2" -by (simp only: nat_to_nat2_def nat2_to_nat_inj inj_imp_surj_inv) - - -lemma gauss_sum_nat_upto: "2 * (\i\n::nat. i) = n * (n + 1)" -using gauss_sum[where 'a = nat] -by (simp add:atLeast0AtMost setsum_shift_lb_Suc0_0 numeral_2_eq_2) - -lemma nat2_to_nat_surj: "surj nat2_to_nat" -proof (unfold surj_def) - { - fix z::nat - def r \ "Max {r. (\i\r. i) \ z}" - def x \ "z - (\i\r. i)" - - hence "finite {r. (\i\r. i) \ z}" - by (simp add: lessThan_Suc_atMost[symmetric] lessThan_Suc finite_less_ub) - also have "0 \ {r. (\i\r. i) \ z}" by simp - hence "{r::nat. (\i\r. i) \ z} \ {}" by fast - ultimately have a: "r \ {r. (\i\r. i) \ z} \ (\s \ {r. (\i\r. i) \ z}. s \ r)" - by (simp add: r_def del:mem_Collect_eq) - { - assume "rx" by simp - hence "(\i\r. i)+(r+1)\z" using x_def by arith - hence "(r+1) \ {r. (\i\r. i) \ z}" by simp - with a have "(r+1)\r" by simp - } - hence b: "x\r" by force - - def y \ "r-x" - have "2*z=2*(\i\r. i)+2*x" using x_def a by simp arith - also have "\ = r * (r+1) + 2*x" using gauss_sum_nat_upto by simp - also have "\ = (x+y)*(x+y+1)+2*x" using y_def b by simp - also { have "2 dvd ((x+y)*(x+y+1))" using dvd2_a_x_suc_a by simp } - hence "\ = 2 * nat2_to_nat(x,y)" - using nat2_to_nat_def by (simp add: Let_def dvd_mult_div_cancel) - finally have "z=nat2_to_nat (x, y)" by simp - } - thus "\y. \x. y = nat2_to_nat x" by fast -qed - -end