diff -r 83acab8042ad -r c92e38c3cbaa doc-src/TutorialI/Sets/sets.tex --- a/doc-src/TutorialI/Sets/sets.tex Thu Dec 13 16:48:07 2001 +0100 +++ b/doc-src/TutorialI/Sets/sets.tex Thu Dec 13 16:48:34 2001 +0100 @@ -670,7 +670,7 @@ available: \begin{isabelle} r\ O\ s\ \isasymequiv\ \isacharbraceleft(x,z).\ \isasymexists y.\ (x,y)\ \isasymin\ s\ \isasymand\ (y,z)\ \isasymin\ r\isacharbraceright -\rulenamedx{comp_def} +\rulenamedx{rel_comp_def} \end{isabelle} % This is one of the many lemmas proved about these concepts: @@ -686,7 +686,7 @@ \isasymlbrakk r\isacharprime\ \isasymsubseteq\ r;\ s\isacharprime\ \isasymsubseteq\ s\isasymrbrakk\ \isasymLongrightarrow\ r\isacharprime\ O\ s\isacharprime\ \isasymsubseteq\ r\ O\ s% -\rulename{comp_mono} +\rulename{rel_comp_mono} \end{isabelle} \indexbold{converse!of a relation}% @@ -704,7 +704,7 @@ Here is a typical law proved about converse and composition: \begin{isabelle} (r\ O\ s)\isasyminverse\ =\ s\isasyminverse\ O\ r\isasyminverse -\rulename{converse_comp} +\rulename{converse_rel_comp} \end{isabelle} \indexbold{image!under a relation}%