diff -r 3de230ed0547 -r c9adb50f74ad src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Thu Jan 31 11:31:27 2013 +0100 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Thu Jan 31 11:31:30 2013 +0100 @@ -297,7 +297,7 @@ qed next fix x show "(SUP i. ?g i x) = max 0 (u x)" - proof (rule ereal_SUPI) + proof (rule SUP_eqI) fix i show "?g i x \ max 0 (u x)" unfolding max_def f_def by (cases "u x") (auto simp: field_simps real_natfloor_le natfloor_neg mult_nonpos_nonneg mult_nonneg_nonneg) @@ -2147,7 +2147,7 @@ assume neq_0: "(\\<^isup>+ x. max 0 (ereal (2 * w x)) \M) \ 0" (is "?wx \ 0") have "0 = limsup (\n. 0 :: ereal)" by (simp add: Limsup_const) also have "\ \ limsup (\n. \\<^isup>+ x. ereal \u n x - u' x\ \M)" - by (intro limsup_mono positive_integral_positive) + by (simp add: Limsup_mono positive_integral_positive) finally have pos: "0 \ limsup (\n. \\<^isup>+ x. ereal \u n x - u' x\ \M)" . have "?wx = (\\<^isup>+ x. liminf (\n. max 0 (ereal (?diff n x))) \M)" using u' @@ -2178,11 +2178,11 @@ qed have "liminf ?f \ limsup ?f" - by (intro ereal_Liminf_le_Limsup trivial_limit_sequentially) + by (intro Liminf_le_Limsup trivial_limit_sequentially) moreover { have "0 = liminf (\n. 0 :: ereal)" by (simp add: Liminf_const) also have "\ \ liminf ?f" - by (intro liminf_mono positive_integral_positive) + by (simp add: Liminf_mono positive_integral_positive) finally have "0 \ liminf ?f" . } ultimately have liminf_limsup_eq: "liminf ?f = ereal 0" "limsup ?f = ereal 0" using `limsup ?f = 0` by auto