diff -r d19cdbd8b559 -r c9cfe1638bf2 src/ZF/OrderArith.thy --- a/src/ZF/OrderArith.thy Sun Jul 14 15:11:21 2002 +0200 +++ b/src/ZF/OrderArith.thy Sun Jul 14 15:14:43 2002 +0200 @@ -3,9 +3,10 @@ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge -Towards ordinal arithmetic. Also useful with wfrec. *) +header{*Combining Orderings: Foundations of Ordinal Arithmetic*} + theory OrderArith = Order + Sum + Ordinal: constdefs @@ -32,29 +33,25 @@ "measure(A,f) == {: A*A. f(x) < f(y)}" -(**** Addition of relations -- disjoint sum ****) +subsection{*Addition of Relations -- Disjoint Sum*} (** Rewrite rules. Can be used to obtain introduction rules **) lemma radd_Inl_Inr_iff [iff]: " : radd(A,r,B,s) <-> a:A & b:B" -apply (unfold radd_def, blast) -done +by (unfold radd_def, blast) lemma radd_Inl_iff [iff]: " : radd(A,r,B,s) <-> a':A & a:A & :r" -apply (unfold radd_def, blast) -done +by (unfold radd_def, blast) lemma radd_Inr_iff [iff]: " : radd(A,r,B,s) <-> b':B & b:B & :s" -apply (unfold radd_def, blast) -done +by (unfold radd_def, blast) lemma radd_Inr_Inl_iff [iff]: " : radd(A,r,B,s) <-> False" -apply (unfold radd_def, blast) -done +by (unfold radd_def, blast) (** Elimination Rule **) @@ -64,8 +61,7 @@ !!x' x. [| p'=Inl(x'); p=Inl(x); : r; x':A; x:A |] ==> Q; !!y' y. [| p'=Inr(y'); p=Inr(y); : s; y':B; y:B |] ==> Q |] ==> Q" -apply (unfold radd_def, blast) -done +by (unfold radd_def, blast) (** Type checking **) @@ -80,8 +76,7 @@ lemma linear_radd: "[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))" -apply (unfold linear_def, blast) -done +by (unfold linear_def, blast) (** Well-foundedness **) @@ -119,7 +114,8 @@ lemma sum_bij: "[| f: bij(A,C); g: bij(B,D) |] ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)" -apply (rule_tac d = "case (%x. Inl (converse (f) `x), %y. Inr (converse (g) `y))" in lam_bijective) +apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))" + in lam_bijective) apply (typecheck add: bij_is_inj inj_is_fun) apply (auto simp add: left_inverse_bij right_inverse_bij) done @@ -156,11 +152,10 @@ "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t), A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))" -apply (rule sum_assoc_bij [THEN ord_isoI], auto) -done +by (rule sum_assoc_bij [THEN ord_isoI], auto) -(**** Multiplication of relations -- lexicographic product ****) +subsection{*Multiplication of Relations -- Lexicographic Product*} (** Rewrite rule. Can be used to obtain introduction rules **) @@ -169,23 +164,19 @@ (: r & a':A & a:A & b': B & b: B) | (: s & a'=a & a:A & b': B & b: B)" -apply (unfold rmult_def, blast) -done +by (unfold rmult_def, blast) lemma rmultE: "[| <, > : rmult(A,r,B,s); [| : r; a':A; a:A; b':B; b:B |] ==> Q; [| : s; a:A; a'=a; b':B; b:B |] ==> Q |] ==> Q" -apply blast -done +by blast (** Type checking **) lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)" -apply (unfold rmult_def) -apply (rule Collect_subset) -done +by (unfold rmult_def, rule Collect_subset) lemmas field_rmult = rmult_type [THEN field_rel_subset] @@ -193,8 +184,7 @@ lemma linear_rmult: "[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))" -apply (simp add: linear_def, blast) -done +by (simp add: linear_def, blast) (** Well-foundedness **) @@ -289,33 +279,28 @@ lemma sum_prod_distrib_bij: "(lam :(A+B)*C. case(%y. Inl(), %y. Inr(), x)) : bij((A+B)*C, (A*C)+(B*C))" -apply (rule_tac d = "case (%., %.) " - in lam_bijective) -apply auto -done +by (rule_tac d = "case (%., %.) " + in lam_bijective, auto) lemma sum_prod_distrib_ord_iso: "(lam :(A+B)*C. case(%y. Inl(), %y. Inr(), x)) : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t), (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))" -apply (rule sum_prod_distrib_bij [THEN ord_isoI], auto) -done +by (rule sum_prod_distrib_bij [THEN ord_isoI], auto) (** Associativity **) lemma prod_assoc_bij: "(lam <, z>:(A*B)*C. >) : bij((A*B)*C, A*(B*C))" -apply (rule_tac d = "%>. <, z>" in lam_bijective, auto) -done +by (rule_tac d = "%>. <, z>" in lam_bijective, auto) lemma prod_assoc_ord_iso: "(lam <, z>:(A*B)*C. >) : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t), A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))" -apply (rule prod_assoc_bij [THEN ord_isoI], auto) -done +by (rule prod_assoc_bij [THEN ord_isoI], auto) -(**** Inverse image of a relation ****) +subsection{*Inverse Image of a Relation*} (** Rewrite rule **) @@ -325,8 +310,7 @@ (** Type checking **) lemma rvimage_type: "rvimage(A,f,r) <= A*A" -apply (unfold rvimage_def) -apply (rule Collect_subset) +apply (unfold rvimage_def, rule Collect_subset) done lemmas field_rvimage = rvimage_type [THEN field_rel_subset] @@ -410,8 +394,7 @@ lemma ord_iso_rvimage_eq: "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A" -apply (unfold ord_iso_def rvimage_def, blast) -done +by (unfold ord_iso_def rvimage_def, blast) (** The "measure" relation is useful with wfrec **) @@ -424,12 +407,10 @@ done lemma wf_measure [iff]: "wf(measure(A,f))" -apply (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage) -done +by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage) lemma measure_iff [iff]: " : measure(A,f) <-> x:A & y:A & f(x)