diff -r 2735b11a3de8 -r c9e091867206 src/HOL/Relation.thy --- a/src/HOL/Relation.thy Mon Dec 26 14:04:06 2022 +0100 +++ b/src/HOL/Relation.thy Mon Dec 26 14:34:32 2022 +0100 @@ -718,11 +718,11 @@ lemma transp_singleton [simp]: "transp (\x y. x = a \ y = a)" by (simp add: transp_def) -lemma asym_on_iff_irrefl_on_if_trans: "trans r \ asym_on A r \ irrefl_on A r" - by (auto intro: irrefl_onI dest: transD asym_onD irrefl_onD) +lemma asym_on_iff_irrefl_on_if_trans_on: "trans_on A r \ asym_on A r \ irrefl_on A r" + by (auto intro: irrefl_on_if_asym_on dest: trans_onD irrefl_onD) -lemma asymp_on_iff_irreflp_on_if_transp: "transp R \ asymp_on A R \ irreflp_on A R" - by (rule asym_on_iff_irrefl_on_if_trans[to_pred]) +lemma asymp_on_iff_irreflp_on_if_transp_on: "transp_on A R \ asymp_on A R \ irreflp_on A R" + by (rule asym_on_iff_irrefl_on_if_trans_on[to_pred]) lemma (in preorder) transp_on_le[simp]: "transp_on A (\)" by (auto intro: transp_onI order_trans)