diff -r b254d5ad6dd4 -r ca2b00c4bba7 doc-src/TutorialI/Inductive/Advanced.tex --- a/doc-src/TutorialI/Inductive/Advanced.tex Fri Jan 12 16:07:20 2001 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,431 +0,0 @@ - -This section describes advanced features of inductive definitions. -The premises of introduction rules may contain universal quantifiers and -monotonic functions. Theorems may be proved by rule inversion. - -\subsection{Universal quantifiers in introduction rules} -\label{sec:gterm-datatype} - -As a running example, this section develops the theory of \textbf{ground -terms}: terms constructed from constant and function -symbols but not variables. To simplify matters further, we regard a -constant as a function applied to the null argument list. Let us declare a -datatype \isa{gterm} for the type of ground terms. It is a type constructor -whose argument is a type of function symbols. -\begin{isabelle} -\isacommand{datatype}\ 'f\ gterm\ =\ Apply\ 'f\ "'f\ gterm\ list" -\end{isabelle} -To try it out, we declare a datatype of some integer operations: -integer constants, the unary minus operator and the addition -operator. -\begin{isabelle} -\isacommand{datatype}\ integer_op\ =\ Number\ int\ |\ UnaryMinus\ |\ Plus -\end{isabelle} -Now the type \isa{integer\_op gterm} denotes the ground -terms built over those symbols. - -The type constructor \texttt{gterm} can be generalized to a function -over sets. It returns -the set of ground terms that can be formed over a set \isa{F} of function symbols. For -example, we could consider the set of ground terms formed from the finite -set {\isa{\{Number 2, UnaryMinus, Plus\}}}. - -This concept is inductive. If we have a list \isa{args} of ground terms -over~\isa{F} and a function symbol \isa{f} in \isa{F}, then we -can apply \isa{f} to \isa{args} to obtain another ground term. -The only difficulty is that the argument list may be of any length. Hitherto, -each rule in an inductive definition referred to the inductively -defined set a fixed number of times, typically once or twice. -A universal quantifier in the premise of the introduction rule -expresses that every element of \isa{args} belongs -to our inductively defined set: is a ground term -over~\isa{F}. The function {\isa{set}} denotes the set of elements in a given -list. -\begin{isabelle} -\isacommand{consts}\ gterms\ ::\ "'f\ set\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline -\isacommand{inductive}\ "gterms\ F"\isanewline -\isakeyword{intros}\isanewline -step[intro!]:\ "\isasymlbrakk \isasymforall t\ \isasymin \ set\ args.\ t\ \isasymin \ gterms\ F;\ \ f\ \isasymin \ F\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ gterms\ -F" -\end{isabelle} - -To demonstrate a proof from this definition, let us -show that the function \isa{gterms} -is \textbf{monotonic}. We shall need this concept shortly. -\begin{isabelle} -\isacommand{lemma}\ "F\isasymsubseteq G\ \isasymLongrightarrow \ gterms\ F\ \isasymsubseteq \ gterms\ G"\isanewline -\isacommand{apply}\ clarify\isanewline -\isacommand{apply}\ (erule\ gterms.induct)\isanewline -\isacommand{apply}\ blast\isanewline -\isacommand{done} -\end{isabelle} -Intuitively, this theorem says that -enlarging the set of function symbols enlarges the set of ground -terms. The proof is a trivial rule induction. -First we use the \isa{clarify} method to assume the existence of an element of -\isa{terms~F}. (We could have used \isa{intro subsetI}.) We then -apply rule induction. Here is the resulting subgoal: -\begin{isabelle} -1.\ \isasymAnd x\ f\ args.\isanewline -\ \ \ \ \ \ \isasymlbrakk F\ \isasymsubseteq \ G;\ \isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F\ \isasymand \ t\ \isasymin \ gterms\ G;\ f\ \isasymin \ F\isasymrbrakk \isanewline -\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ G% -\end{isabelle} -% -The assumptions state that \isa{f} belongs -to~\isa{F}, which is included in~\isa{G}, and that every element of the list \isa{args} is -a ground term over~\isa{G}. The \isa{blast} method finds this chain of reasoning easily. - -\textit{Remark}: why do we call this function \isa{gterms} instead -of {\isa{gterm}}? Isabelle maintains separate name spaces for types -and constants, so there is no danger of confusion. However, name -clashes could arise in the theorems that Isabelle generates. -Our choice of names keeps {\isa{gterms.induct}} separate from {\isa{gterm.induct}}. - -\subsection{Rule inversion}\label{sec:rule-inversion} - -Case analysis on an inductive definition is called \textbf{rule inversion}. -It is frequently used in proofs about operational semantics. It can be -highly effective when it is applied automatically. Let us look at how rule -inversion is done in Isabelle. - -Recall that \isa{even} is the minimal set closed under these two rules: -\begin{isabelle} -0\ \isasymin \ even\isanewline -n\ \isasymin \ even\ \isasymLongrightarrow \ (Suc\ (Suc\ n))\ \isasymin -\ even -\end{isabelle} -Minimality means that \isa{even} contains only the elements that these -rules force it to contain. If we are told that \isa{a} -belongs to -\isa{even} then there are only two possibilities. Either \isa{a} is \isa{0} -or else \isa{a} has the form \isa{Suc(Suc~n)}, for an arbitrary \isa{n} -that belongs to -\isa{even}. That is the gist of the \isa{cases} rule, which Isabelle proves -for us when it accepts an inductive definition: -\begin{isabelle} -\isasymlbrakk a\ \isasymin \ even;\isanewline -\ a\ =\ 0\ \isasymLongrightarrow \ P;\isanewline -\ \isasymAnd n.\ \isasymlbrakk a\ =\ Suc(Suc\ n);\ n\ \isasymin \ -even\isasymrbrakk \ \isasymLongrightarrow \ P\isasymrbrakk \ -\isasymLongrightarrow \ P -\rulename{even.cases} -\end{isabelle} - -This general rule is less useful than instances of it for -specific patterns. For example, if \isa{a} has the form -\isa{Suc(Suc~n)} then the first case becomes irrelevant, while the second -case tells us that \isa{n} belongs to \isa{even}. Isabelle will generate -this instance for us: -\begin{isabelle} -\isacommand{inductive\_cases}\ Suc_Suc_cases\ [elim!]: -\ "Suc(Suc\ n)\ \isasymin \ even" -\end{isabelle} -The \isacommand{inductive\_cases} command generates an instance of the -\isa{cases} rule for the supplied pattern and gives it the supplied name: -% -\begin{isabelle} -\isasymlbrakk Suc\ (Suc\ n)\ \isasymin \ even;\ n\ \isasymin \ even\ -\isasymLongrightarrow \ P\isasymrbrakk \ \isasymLongrightarrow \ P% -\rulename{Suc_Suc_cases} -\end{isabelle} -% -Applying this as an elimination rule yields one case where \isa{even.cases} -would yield two. Rule inversion works well when the conclusions of the -introduction rules involve datatype constructors like \isa{Suc} and \isa{\#} -(list `cons'); freeness reasoning discards all but one or two cases. - -In the \isacommand{inductive\_cases} command we supplied an -attribute, \isa{elim!}, indicating that this elimination rule can be applied -aggressively. The original -\isa{cases} rule would loop if used in that manner because the -pattern~\isa{a} matches everything. - -The rule \isa{Suc_Suc_cases} is equivalent to the following implication: -\begin{isabelle} -Suc (Suc\ n)\ \isasymin \ even\ \isasymLongrightarrow \ n\ \isasymin \ -even -\end{isabelle} -% -In \S\ref{sec:gen-rule-induction} we devoted some effort to proving precisely -this result. Yet we could have obtained it by a one-line declaration. -This example also justifies the terminology \textbf{rule inversion}: the new -rule inverts the introduction rule \isa{even.step}. - -For one-off applications of rule inversion, use the \isa{ind_cases} method. -Here is an example: -\begin{isabelle} -\isacommand{apply}\ (ind_cases\ "Suc(Suc\ n)\ \isasymin \ even") -\end{isabelle} -The specified instance of the \isa{cases} rule is generated, applied, and -discarded. - -\medskip -Let us try rule inversion on our ground terms example: -\begin{isabelle} -\isacommand{inductive\_cases}\ gterm_Apply_elim\ [elim!]:\ "Apply\ f\ args\ -\isasymin\ gterms\ F" -\end{isabelle} -% -Here is the result. No cases are discarded (there was only one to begin -with) but the rule applies specifically to the pattern \isa{Apply\ f\ args}. -It can be applied repeatedly as an elimination rule without looping, so we -have given the -\isa{elim!}\ attribute. -\begin{isabelle} -\isasymlbrakk Apply\ f\ args\ \isasymin \ gterms\ F;\isanewline -\ \isasymlbrakk -\isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F;\ f\ \isasymin -\ F\isasymrbrakk \ \isasymLongrightarrow \ P\isasymrbrakk\isanewline -\isasymLongrightarrow \ P% -\rulename{gterm_Apply_elim} -\end{isabelle} - -This rule replaces an assumption about \isa{Apply\ f\ args} by -assumptions about \isa{f} and~\isa{args}. Here is a proof in which this -inference is essential. We show that if \isa{t} is a ground term over both -of the sets -\isa{F} and~\isa{G} then it is also a ground term over their intersection, -\isa{F\isasyminter G}. -\begin{isabelle} -\isacommand{lemma}\ gterms_IntI\ [rule_format]:\isanewline -\ \ \ \ \ "t\ \isasymin \ gterms\ F\ \isasymLongrightarrow \ t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\isasyminter G)"\isanewline -\isacommand{apply}\ (erule\ gterms.induct)\isanewline -\isacommand{apply}\ blast\isanewline -\isacommand{done} -\end{isabelle} -% -The proof begins with rule induction over the definition of -\isa{gterms}, which leaves a single subgoal: -\begin{isabelle} -1.\ \isasymAnd args\ f.\isanewline -\ \ \ \ \ \ \isasymlbrakk \isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F\ \isasymand\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\ \isasyminter \ G));\isanewline -\ \ \ \ \ \ \ f\ \isasymin \ F\isasymrbrakk \isanewline -\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ (F\ \isasyminter \ G) -\end{isabelle} -% -The induction hypothesis states that every element of \isa{args} belongs to -\isa{gterms\ (F\ \isasyminter \ G)} --- provided it already belongs to -\isa{gterms\ G}. How do we meet that condition? - -By assuming (as we may) the formula \isa{Apply\ f\ args\ \isasymin \ gterms\ -G}. Rule inversion, in the form of \isa{gterm_Apply_elim}, infers that every -element of \isa{args} belongs to -\isa{gterms~G}. It also yields \isa{f\ \isasymin \ G}, which will allow us -to conclude \isa{f\ \isasymin \ F\ \isasyminter \ G}. All of this reasoning -is done by \isa{blast}. - -\medskip - -To summarize, every inductive definition produces a \isa{cases} rule. The -\isacommand{inductive\_cases} command stores an instance of the \isa{cases} -rule for a given pattern. Within a proof, the \isa{ind_cases} method -applies an instance of the \isa{cases} -rule. - - -\subsection{Continuing the `ground terms' example} - -Call a term \textbf{well-formed} if each symbol occurring in it has -the correct number of arguments. To formalize this concept, we -introduce a function mapping each symbol to its arity, a natural -number. - -Let us define the set of well-formed ground terms. -Suppose we are given a function called \isa{arity}, specifying the arities to be used. -In the inductive step, we have a list \isa{args} of such terms and a function -symbol~\isa{f}. If the length of the list matches the function's arity -then applying \isa{f} to \isa{args} yields a well-formed term. -\begin{isabelle} -\isacommand{consts}\ well_formed_gterm\ ::\ "('f\ \isasymRightarrow \ nat)\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline -\isacommand{inductive}\ "well_formed_gterm\ arity"\isanewline -\isakeyword{intros}\isanewline -step[intro!]:\ "\isasymlbrakk \isasymforall t\ \isasymin \ set\ args.\ t\ \isasymin \ well_formed_gterm\ arity;\ \ \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ well_formed_gterm\ -arity" -\end{isabelle} -% -The inductive definition neatly captures the reasoning above. -It is just an elaboration of the previous one, consisting of a single -introduction rule. The universal quantification over the -\isa{set} of arguments expresses that all of them are well-formed. - -\subsection{Alternative definition using a monotonic function} - -An inductive definition may refer to the inductively defined -set through an arbitrary monotonic function. To demonstrate this -powerful feature, let us -change the inductive definition above, replacing the -quantifier by a use of the function \isa{lists}. This -function, from the Isabelle library, is analogous to the -function \isa{gterms} declared above. If \isa{A} is a set then -{\isa{lists A}} is the set of lists whose elements belong to -\isa{A}. - -In the inductive definition of well-formed terms, examine the one -introduction rule. The first premise states that \isa{args} belongs to -the \isa{lists} of well-formed terms. This formulation is more -direct, if more obscure, than using a universal quantifier. -\begin{isabelle} -\isacommand{consts}\ well_formed_gterm'\ ::\ "('f\ \isasymRightarrow \ nat)\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline -\isacommand{inductive}\ "well_formed_gterm'\ arity"\isanewline -\isakeyword{intros}\isanewline -step[intro!]:\ "\isasymlbrakk args\ \isasymin \ lists\ (well_formed_gterm'\ arity);\ \ \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ well_formed_gterm'\ arity"\isanewline -\isakeyword{monos}\ lists_mono -\end{isabelle} - -We must cite the theorem \isa{lists_mono} in order to justify -using the function \isa{lists}. -\begin{isabelle} -A\ \isasymsubseteq\ B\ \isasymLongrightarrow \ lists\ A\ \isasymsubseteq -\ lists\ B\rulename{lists_mono} -\end{isabelle} -% -Why must the function be monotonic? An inductive definition describes -an iterative construction: each element of the set is constructed by a -finite number of introduction rule applications. For example, the -elements of \isa{even} are constructed by finitely many applications of -the rules -\begin{isabelle} -0\ \isasymin \ even\isanewline -n\ \isasymin \ even\ \isasymLongrightarrow \ (Suc\ (Suc\ n))\ \isasymin -\ even -\end{isabelle} -All references to a set in its -inductive definition must be positive. Applications of an -introduction rule cannot invalidate previous applications, allowing the -construction process to converge. -The following pair of rules do not constitute an inductive definition: -\begin{isabelle} -0\ \isasymin \ even\isanewline -n\ \isasymnotin \ even\ \isasymLongrightarrow \ (Suc\ n)\ \isasymin -\ even -\end{isabelle} -% -Showing that 4 is even using these rules requires showing that 3 is not -even. It is far from trivial to show that this set of rules -characterizes the even numbers. - -Even with its use of the function \isa{lists}, the premise of our -introduction rule is positive: -\begin{isabelle} -args\ \isasymin \ lists\ (well_formed_gterm'\ arity) -\end{isabelle} -To apply the rule we construct a list \isa{args} of previously -constructed well-formed terms. We obtain a -new term, \isa{Apply\ f\ args}. Because \isa{lists} is monotonic, -applications of the rule remain valid as new terms are constructed. -Further lists of well-formed -terms become available and none are taken away. - - -\subsection{A proof of equivalence} - -We naturally hope that these two inductive definitions of `well-formed' -coincide. The equality can be proved by separate inclusions in -each direction. Each is a trivial rule induction. -\begin{isabelle} -\isacommand{lemma}\ "well_formed_gterm\ arity\ \isasymsubseteq \ well_formed_gterm'\ arity"\isanewline -\isacommand{apply}\ clarify\isanewline -\isacommand{apply}\ (erule\ well_formed_gterm.induct)\isanewline -\isacommand{apply}\ auto\isanewline -\isacommand{done} -\end{isabelle} - -The \isa{clarify} method gives -us an element of \isa{well_formed_gterm\ arity} on which to perform -induction. The resulting subgoal can be proved automatically: -\begin{isabelle} -{\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline -\ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\isanewline -\ \ \ \ \ \ \ \ \ \ t\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\ {\isasymand}\ t\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity{\isacharsemicolon}\isanewline -\ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline -\ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity% -\end{isabelle} -% -This proof resembles the one given in -\S\ref{sec:gterm-datatype} above, especially in the form of the -induction hypothesis. Next, we consider the opposite inclusion: -\begin{isabelle} -\isacommand{lemma}\ "well_formed_gterm'\ arity\ \isasymsubseteq \ well_formed_gterm\ arity"\isanewline -\isacommand{apply}\ clarify\isanewline -\isacommand{apply}\ (erule\ well_formed_gterm'.induct)\isanewline -\isacommand{apply}\ auto\isanewline -\isacommand{done} -\end{isabelle} -% -The proof script is identical, but the subgoal after applying induction may -be surprising: -\begin{isabelle} -1.\ \isasymAnd x\ args\ f.\isanewline -\ \ \ \ \ \ \isasymlbrakk args\ \isasymin \ lists\ (well_formed_gterm'\ arity\ \isasyminter\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isacharbraceleft u.\ u\ \isasymin \ well_formed_gterm\ arity\isacharbraceright );\isanewline -\ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline -\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ well_formed_gterm\ arity% -\end{isabelle} -The induction hypothesis contains an application of \isa{lists}. Using a -monotonic function in the inductive definition always has this effect. The -subgoal may look uninviting, but fortunately a useful rewrite rule concerning -\isa{lists} is available: -\begin{isabelle} -lists\ (A\ \isasyminter \ B)\ =\ lists\ A\ \isasyminter \ lists\ B -\rulename{lists_Int_eq} -\end{isabelle} -% -Thanks to this default simplification rule, the induction hypothesis -is quickly replaced by its two parts: -\begin{isabelle} -\ \ \ \ \ \ \ args\ \isasymin \ lists\ (well_formed_gterm'\ arity)\isanewline -\ \ \ \ \ \ \ args\ \isasymin \ lists\ (well_formed_gterm\ arity) -\end{isabelle} -Invoking the rule \isa{well_formed_gterm.step} completes the proof. The -call to -\isa{auto} does all this work. - -This example is typical of how monotonic functions can be used. In -particular, a rewrite rule analogous to \isa{lists_Int_eq} holds in most -cases. Monotonicity implies one direction of this set equality; we have -this theorem: -\begin{isabelle} -mono\ f\ \isasymLongrightarrow \ f\ (A\ \isasyminter \ B)\ \isasymsubseteq \ -f\ A\ \isasyminter \ f\ B% -\rulename{mono_Int} -\end{isabelle} - - -To summarize: a universal quantifier in an introduction rule -lets it refer to any number of instances of -the inductively defined set. A monotonic function in an introduction -rule lets it refer to constructions over the inductively defined -set. Each element of an inductively defined set is created -through finitely many applications of the introduction rules. So each rule -must be positive, and never can it refer to \textit{infinitely} many -previous instances of the inductively defined set. - - - -\begin{exercise} -Prove this theorem, one direction of which was proved in -\S\ref{sec:rule-inversion} above. -\begin{isabelle} -\isacommand{lemma}\ gterms_Int_eq\ [simp]:\ "gterms\ (F\isasyminter G)\ =\ -gterms\ F\ \isasyminter \ gterms\ G"\isanewline -\end{isabelle} -\end{exercise} - - -\begin{exercise} -A function mapping function symbols to their -types is called a \textbf{signature}. Given a type -ranging over type symbols, we can represent a function's type by a -list of argument types paired with the result type. -Complete this inductive definition: -\begin{isabelle} -\isacommand{consts}\ well_typed_gterm::\ "('f\ \isasymRightarrow \ 't\ list\ *\ 't)\ \isasymRightarrow \ ('f\ gterm\ *\ 't)set"\isanewline -\isacommand{inductive}\ "well_typed_gterm\ sig"\isanewline -\end{isabelle} -\end{exercise}