diff -r 183a28459663 -r ca486ee0e4c5 src/HOL/Analysis/Abstract_Metric_Spaces.thy --- a/src/HOL/Analysis/Abstract_Metric_Spaces.thy Mon Oct 02 11:28:23 2023 +0200 +++ b/src/HOL/Analysis/Abstract_Metric_Spaces.thy Tue Oct 03 15:01:54 2023 +0100 @@ -2562,12 +2562,12 @@ lemma derived_set_of_infinite_mball: "mtopology derived_set_of S = {x \ M. \e>0. infinite(S \ mball x e)}" unfolding derived_set_of_infinite_openin_metric - by (meson centre_in_mball_iff openin_mball derived_set_of_infinite_1 derived_set_of_infinite_2) + by (metis (no_types, opaque_lifting) centre_in_mball_iff openin_mball derived_set_of_infinite_1 derived_set_of_infinite_2) lemma derived_set_of_infinite_mcball: "mtopology derived_set_of S = {x \ M. \e>0. infinite(S \ mcball x e)}" unfolding derived_set_of_infinite_openin_metric - by (meson centre_in_mball_iff openin_mball derived_set_of_infinite_1 derived_set_of_infinite_2) + by (metis (no_types, opaque_lifting) centre_in_mball_iff openin_mball derived_set_of_infinite_1 derived_set_of_infinite_2) end @@ -2671,7 +2671,8 @@ proof - have "\x. x \ topspace X \ \l. limitin mtopology (\n. f n x) l sequentially" using \mcomplete\ [unfolded mcomplete, rule_format] assms - by (smt (verit) contf continuous_map_def eventually_mono topspace_mtopology Pi_iff) + unfolding continuous_map_def Pi_iff topspace_mtopology + by (smt (verit, del_insts) eventually_mono) then obtain g where g: "\x. x \ topspace X \ limitin mtopology (\n. f n x) (g x) sequentially" by metis show thesis @@ -3992,7 +3993,8 @@ lemma uniformly_continuous_map_compose: assumes f: "uniformly_continuous_map m1 m2 f" and g: "uniformly_continuous_map m2 m3 g" shows "uniformly_continuous_map m1 m3 (g \ f)" - by (smt (verit, ccfv_threshold) comp_apply f g Pi_iff uniformly_continuous_map_def) + using f g unfolding uniformly_continuous_map_def comp_apply Pi_iff + by metis lemma uniformly_continuous_map_real_const [simp]: "uniformly_continuous_map m euclidean_metric (\x. c)" @@ -5109,7 +5111,6 @@ by (metis (full_types) completely_metrizable_space_def) qed - proposition metrizable_space_product_topology: "metrizable_space (product_topology X I) \ (product_topology X I) = trivial_topology \