diff -r a2d4742b127f -r cbd310584cff src/HOL/Tools/inductive_set.ML --- a/src/HOL/Tools/inductive_set.ML Mon Dec 28 16:30:24 2015 +0100 +++ b/src/HOL/Tools/inductive_set.ML Mon Dec 28 16:34:26 2015 +0100 @@ -470,10 +470,11 @@ (* define inductive sets using previously defined predicates *) val (defs, lthy2) = lthy1 |> fold_map Local_Theory.define - (map (fn (((c, syn), (fs, U, _)), p) => ((c, syn), ((Thm.def_binding c, []), - fold_rev lambda params (HOLogic.Collect_const U $ - HOLogic.mk_ptupleabs fs U HOLogic.boolT (list_comb (p, params3)))))) - (cnames_syn ~~ cs_info ~~ preds)); + (map (fn (((b, mx), (fs, U, _)), p) => + ((b, mx), ((Binding.reset_pos (Thm.def_binding b), []), + fold_rev lambda params (HOLogic.Collect_const U $ + HOLogic.mk_ptupleabs fs U HOLogic.boolT (list_comb (p, params3)))))) + (cnames_syn ~~ cs_info ~~ preds)); (* prove theorems for converting predicate to set notation *) val lthy3 = fold