diff -r ead544f3d6a1 -r cc3958d31b1d src/HOL/Library/reflection.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/reflection.ML Wed Jan 28 11:04:10 2009 +0100 @@ -0,0 +1,327 @@ +(* Title: HOL/Library/reflection.ML + Author: Amine Chaieb, TU Muenchen + +A trial for automatical reification. +*) + +signature REFLECTION = +sig + val genreify_tac: Proof.context -> thm list -> term option -> int -> tactic + val reflection_tac: Proof.context -> thm list -> thm list -> term option -> int -> tactic + val gen_reflection_tac: Proof.context -> (cterm -> thm) + -> thm list -> thm list -> term option -> int -> tactic +end; + +structure Reflection : REFLECTION = +struct + +val ext2 = @{thm ext2}; +val nth_Cons_0 = @{thm nth_Cons_0}; +val nth_Cons_Suc = @{thm nth_Cons_Suc}; + + (* Make a congruence rule out of a defining equation for the interpretation *) + (* th is one defining equation of f, i.e. + th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" *) + (* Cp is a constructor pattern and P is a pattern *) + + (* The result is: + [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn) *) + (* + the a list of names of the A1 .. An, Those are fresh in the ctxt*) + + +fun mk_congeq ctxt fs th = + let + val (f as Const(fN,fT)) = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq + |> fst |> strip_comb |> fst + val thy = ProofContext.theory_of ctxt + val cert = Thm.cterm_of thy + val (((_,_),[th']), ctxt') = Variable.import_thms true [th] ctxt + val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th')) + fun add_fterms (t as t1 $ t2) = + if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs then insert (op aconv) t + else add_fterms t1 #> add_fterms t2 + | add_fterms (t as Abs(xn,xT,t')) = + if exists_Const (fn (c, _) => c = fN) t then (fn _ => [t]) else (fn _ => []) + | add_fterms _ = I + val fterms = add_fterms rhs [] + val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt' + val tys = map fastype_of fterms + val vs = map Free (xs ~~ tys) + val env = fterms ~~ vs + (* FIXME!!!!*) + fun replace_fterms (t as t1 $ t2) = + (case AList.lookup (op aconv) env t of + SOME v => v + | NONE => replace_fterms t1 $ replace_fterms t2) + | replace_fterms t = (case AList.lookup (op aconv) env t of + SOME v => v + | NONE => t) + + fun mk_def (Abs(x,xT,t),v) = HOLogic.mk_Trueprop ((HOLogic.all_const xT)$ Abs(x,xT,HOLogic.mk_eq(v$(Bound 0), t))) + | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t)) + fun tryext x = (x RS ext2 handle THM _ => x) + val cong = (Goal.prove ctxt'' [] (map mk_def env) + (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs))) + (fn x => LocalDefs.unfold_tac (#context x) (map tryext (#prems x)) + THEN rtac th' 1)) RS sym + + val (cong' :: vars') = + Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o cert) vs) + val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars' + + in (vs', cong') end; + (* congs is a list of pairs (P,th) where th is a theorem for *) + (* [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *) +val FWD = curry (op OF); + + (* da is the decomposition for atoms, ie. it returns ([],g) where g + returns the right instance f (AtC n) = t , where AtC is the Atoms + constructor and n is the number of the atom corresponding to t *) + +(* Generic decomp for reification : matches the actual term with the +rhs of one cong rule. The result of the matching guides the +proof synthesis: The matches of the introduced Variables A1 .. An are +processed recursively + The rest is instantiated in the cong rule,i.e. no reification is needed *) + +exception REIF of string; + +val bds = ref ([]: (typ * ((term list) * (term list))) list); + +fun index_of t = + let + val tt = HOLogic.listT (fastype_of t) + in + (case AList.lookup Type.could_unify (!bds) tt of + NONE => error "index_of : type not found in environements!" + | SOME (tbs,tats) => + let + val i = find_index_eq t tats + val j = find_index_eq t tbs + in (if j= ~1 then + if i= ~1 + then (bds := AList.update Type.could_unify (tt,(tbs,tats@[t])) (!bds) ; + length tbs + length tats) + else i else j) + end) + end; + +fun dest_listT (Type ("List.list", [T])) = T; + +fun decomp_genreif da cgns (t,ctxt) = + let + val thy = ProofContext.theory_of ctxt + val cert = cterm_of thy + fun tryabsdecomp (s,ctxt) = + (case s of + Abs(xn,xT,ta) => + (let + val ([xn],ctxt') = Variable.variant_fixes ["x"] ctxt + val (xn,ta) = variant_abs (xn,xT,ta) + val x = Free(xn,xT) + val _ = (case AList.lookup Type.could_unify (!bds) (HOLogic.listT xT) + of NONE => error "tryabsdecomp: Type not found in the Environement" + | SOME (bsT,atsT) => + (bds := AList.update Type.could_unify (HOLogic.listT xT, ((x::bsT), atsT)) (!bds))) + in ([(ta, ctxt')] , + fn [th] => ((let val (bsT,asT) = the(AList.lookup Type.could_unify (!bds) (HOLogic.listT xT)) + in (bds := AList.update Type.could_unify (HOLogic.listT xT,(tl bsT,asT)) (!bds)) + end) ; + hd (Variable.export ctxt' ctxt [(forall_intr (cert x) th) COMP allI]))) + end) + | _ => da (s,ctxt)) + in + (case cgns of + [] => tryabsdecomp (t,ctxt) + | ((vns,cong)::congs) => ((let + val cert = cterm_of thy + val certy = ctyp_of thy + val (tyenv, tmenv) = + Pattern.match thy + ((fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) (concl_of cong), t) + (Envir.type_env (Envir.empty 0), Vartab.empty) + val (fnvs,invs) = List.partition (fn ((vn,_),_) => vn mem vns) (Vartab.dest tmenv) + val (fts,its) = + (map (snd o snd) fnvs, + map (fn ((vn,vi),(tT,t)) => (cert(Var ((vn,vi),tT)), cert t)) invs) + val ctyenv = map (fn ((vn,vi),(s,ty)) => (certy (TVar((vn,vi),s)), certy ty)) (Vartab.dest tyenv) + in (fts ~~ (replicate (length fts) ctxt), FWD (instantiate (ctyenv, its) cong)) + end) + handle MATCH => decomp_genreif da congs (t,ctxt))) + end; + + (* looks for the atoms equation and instantiates it with the right number *) + + +fun mk_decompatom eqs (t,ctxt) = +let + val tT = fastype_of t + fun isat eq = + let + val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd + in exists_Const + (fn (n,ty) => n="List.nth" + andalso + AList.defined Type.could_unify (!bds) (domain_type ty)) rhs + andalso Type.could_unify (fastype_of rhs, tT) + end + fun get_nths t acc = + case t of + Const("List.nth",_)$vs$n => insert (fn ((a,_),(b,_)) => a aconv b) (t,(vs,n)) acc + | t1$t2 => get_nths t1 (get_nths t2 acc) + | Abs(_,_,t') => get_nths t' acc + | _ => acc + + fun + tryeqs [] = error "Can not find the atoms equation" + | tryeqs (eq::eqs) = (( + let + val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd + val nths = get_nths rhs [] + val (vss,ns) = fold_rev (fn (_,(vs,n)) => fn (vss,ns) => + (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([],[]) + val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt + val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt' + val thy = ProofContext.theory_of ctxt'' + val cert = cterm_of thy + val certT = ctyp_of thy + val vsns_map = vss ~~ vsns + val xns_map = (fst (split_list nths)) ~~ xns + val subst = map (fn (nt, xn) => (nt, Var ((xn,0), fastype_of nt))) xns_map + val rhs_P = subst_free subst rhs + val (tyenv, tmenv) = Pattern.match + thy (rhs_P, t) + (Envir.type_env (Envir.empty 0), Vartab.empty) + val sbst = Envir.subst_vars (tyenv, tmenv) + val sbsT = Envir.typ_subst_TVars tyenv + val subst_ty = map (fn (n,(s,t)) => (certT (TVar (n, s)), certT t)) + (Vartab.dest tyenv) + val tml = Vartab.dest tmenv + val t's = map (fn xn => snd (valOf (AList.lookup (op =) tml (xn,0)))) xns (* FIXME : Express with sbst*) + val subst_ns = map (fn (Const _ $ vs $ n, Var (xn0,T)) => + (cert n, snd (valOf (AList.lookup (op =) tml xn0)) + |> (index_of #> HOLogic.mk_nat #> cert))) + subst + val subst_vs = + let + fun ty (Const _ $ (vs as Var (vsn,lT)) $ n, Var (xn0,T)) = (certT T, certT (sbsT T)) + fun h (Const _ $ (vs as Var (vsn,lT)) $ n, Var (xn0,T)) = + let + val cns = sbst (Const("List.list.Cons", T --> lT --> lT)) + val lT' = sbsT lT + val (bsT,asT) = the (AList.lookup Type.could_unify (!bds) lT) + val vsn = valOf (AList.lookup (op =) vsns_map vs) + val cvs = cert (fold_rev (fn x => fn xs => cns$x$xs) bsT (Free (vsn, lT'))) + in (cert vs, cvs) end + in map h subst end + val cts = map (fn ((vn,vi),(tT,t)) => (cert(Var ((vn,vi),tT)), cert t)) + (fold (AList.delete (fn (((a: string),_),(b,_)) => a = b)) + (map (fn n => (n,0)) xns) tml) + val substt = + let val ih = Drule.cterm_rule (Thm.instantiate (subst_ty,[])) + in map (fn (v,t) => (ih v, ih t)) (subst_ns@subst_vs@cts) end + val th = (instantiate (subst_ty, substt) eq) RS sym + in hd (Variable.export ctxt'' ctxt [th]) end) + handle MATCH => tryeqs eqs) +in ([], fn _ => tryeqs (filter isat eqs)) +end; + + (* Generic reification procedure: *) + (* creates all needed cong rules and then just uses the theorem synthesis *) + + fun mk_congs ctxt raw_eqs = + let + val fs = fold_rev (fn eq => + insert (op =) (eq |> prop_of |> HOLogic.dest_Trueprop + |> HOLogic.dest_eq |> fst |> strip_comb + |> fst)) raw_eqs [] + val tys = fold_rev (fn f => fn ts => (f |> fastype_of |> binder_types |> tl) + union ts) fs [] + val _ = bds := AList.make (fn _ => ([],[])) tys + val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt + val thy = ProofContext.theory_of ctxt' + val cert = cterm_of thy + val vstys = map (fn (t,v) => (t,SOME (cert (Free(v,t))))) + (tys ~~ vs) + val is_Var = can dest_Var + fun insteq eq vs = + let + val subst = map (fn (v as Var(n,t)) => (cert v, (valOf o valOf) (AList.lookup (op =) vstys t))) + (filter is_Var vs) + in Thm.instantiate ([],subst) eq + end + val eqs = map (fn eq => eq |> prop_of |> HOLogic.dest_Trueprop + |> HOLogic.dest_eq |> fst |> strip_comb |> snd |> tl + |> (insteq eq)) raw_eqs + val (ps,congs) = split_list (map (mk_congeq ctxt' fs) eqs) +in ps ~~ (Variable.export ctxt' ctxt congs) +end + +fun partition P [] = ([],[]) + | partition P (x::xs) = + let val (yes,no) = partition P xs + in if P x then (x::yes,no) else (yes, x::no) end + +fun rearrange congs = +let + fun P (_, th) = + let val @{term "Trueprop"}$(Const ("op =",_) $l$_) = concl_of th + in can dest_Var l end + val (yes,no) = partition P congs + in no @ yes end + + + +fun genreif ctxt raw_eqs t = + let + val congs = rearrange (mk_congs ctxt raw_eqs) + val th = divide_and_conquer (decomp_genreif (mk_decompatom raw_eqs) congs) (t,ctxt) + fun is_listVar (Var (_,t)) = can dest_listT t + | is_listVar _ = false + val vars = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd + |> strip_comb |> snd |> filter is_listVar + val cert = cterm_of (ProofContext.theory_of ctxt) + val cvs = map (fn (v as Var(n,t)) => (cert v, the (AList.lookup Type.could_unify (!bds) t) |> snd |> HOLogic.mk_list (dest_listT t) |> cert)) vars + val th' = instantiate ([], cvs) th + val t' = (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) th' + val th'' = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t'))) + (fn _ => simp_tac (local_simpset_of ctxt) 1) + val _ = bds := [] +in FWD trans [th'',th'] +end + + +fun genreflect ctxt conv corr_thms raw_eqs t = +let + val reifth = genreif ctxt raw_eqs t + fun trytrans [] = error "No suitable correctness theorem found" + | trytrans (th::ths) = + (FWD trans [reifth, th RS sym] handle THM _ => trytrans ths) + val th = trytrans corr_thms + val ft = (Thm.dest_arg1 o Thm.dest_arg o Thm.dest_arg o cprop_of) th + val rth = conv ft +in simplify (HOL_basic_ss addsimps raw_eqs addsimps [nth_Cons_0, nth_Cons_Suc]) + (simplify (HOL_basic_ss addsimps [rth]) th) +end + +fun genreify_tac ctxt eqs to i = (fn st => + let + val P = HOLogic.dest_Trueprop (List.nth (prems_of st, i - 1)) + val t = (case to of NONE => P | SOME x => x) + val th = (genreif ctxt eqs t) RS ssubst + in rtac th i st + end); + + (* Reflection calls reification and uses the correctness *) + (* theorem assumed to be the dead of the list *) +fun gen_reflection_tac ctxt conv corr_thms raw_eqs to i = (fn st => + let + val P = HOLogic.dest_Trueprop (nth (prems_of st) (i - 1)); + val t = the_default P to; + val th = genreflect ctxt conv corr_thms raw_eqs t + RS ssubst; + in (rtac th i THEN TRY(rtac TrueI i)) st end); + +fun reflection_tac ctxt = gen_reflection_tac ctxt Codegen.evaluation_conv; + +end