diff -r 7c5896919eb8 -r cc60e54aa7cb src/HOL/Presburger.thy --- a/src/HOL/Presburger.thy Fri Jan 05 17:38:05 2007 +0100 +++ b/src/HOL/Presburger.thy Sat Jan 06 20:47:09 2007 +0100 @@ -926,18 +926,6 @@ theorem all_nat: "(\x::nat. P x) = (\x::int. 0 <= x \ P (nat x))" by (simp split add: split_nat) -theorem ex_nat: "(\x::nat. P x) = (\x::int. 0 <= x \ P (nat x))" - apply (simp split add: split_nat) - apply (rule iffI) - apply (erule exE) - apply (rule_tac x = "int x" in exI) - apply simp - apply (erule exE) - apply (rule_tac x = "nat x" in exI) - apply (erule conjE) - apply (erule_tac x = "nat x" in allE) - apply simp - done theorem zdiff_int_split: "P (int (x - y)) = ((y \ x \ P (int x - int y)) \ (x < y \ P 0))" @@ -945,22 +933,6 @@ apply (simp_all add: zdiff_int) done -theorem zdvd_int: "(x dvd y) = (int x dvd int y)" - apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric] - nat_0_le cong add: conj_cong) - apply (rule iffI) - apply iprover - apply (erule exE) - apply (case_tac "x=0") - apply (rule_tac x=0 in exI) - apply simp - apply (case_tac "0 \ k") - apply iprover - apply (simp add: linorder_not_le) - apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]]) - apply assumption - apply (simp add: mult_ac) - done theorem number_of1: "(0::int) <= number_of n \ (0::int) <= number_of (n BIT b)" by simp