diff -r de51a86fc903 -r cc97b347b301 src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Fri Jul 04 20:07:08 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Fri Jul 04 20:18:47 2014 +0200 @@ -183,13 +183,13 @@ subsection {* Some frequently useful arithmetic lemmas over vectors. *} instance vec :: (semigroup_mult, finite) semigroup_mult - by default (vector mult_assoc) + by default (vector mult.assoc) instance vec :: (monoid_mult, finite) monoid_mult by default vector+ instance vec :: (ab_semigroup_mult, finite) ab_semigroup_mult - by default (vector mult_commute) + by default (vector mult.commute) instance vec :: (comm_monoid_mult, finite) comm_monoid_mult by default vector @@ -254,7 +254,7 @@ instance vec :: (ring_char_0, finite) ring_char_0 .. lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x" - by (vector mult_assoc) + by (vector mult.assoc) lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x" by (vector field_simps) lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y" @@ -380,14 +380,14 @@ done lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C" - apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc) + apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult.assoc) apply (subst setsum.commute) apply simp done lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x" apply (vector matrix_matrix_mult_def matrix_vector_mult_def - setsum_right_distrib setsum_left_distrib mult_assoc) + setsum_right_distrib setsum_left_distrib mult.assoc) apply (subst setsum.commute) apply simp done @@ -399,7 +399,7 @@ lemma matrix_transpose_mul: "transpose(A ** B) = transpose B ** transpose (A::'a::comm_semiring_1^_^_)" - by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult_commute) + by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult.commute) lemma matrix_eq: fixes A B :: "'a::semiring_1 ^ 'n ^ 'm" @@ -452,7 +452,7 @@ lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\i. (x$i) *s column i A) (UNIV:: 'n set)" - by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult_commute) + by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult.commute) lemma vector_componentwise: "(x::'a::ring_1^'n) = (\ j. \i\UNIV. (x$i) * (axis i 1 :: 'a^'n) $ j)" @@ -498,7 +498,7 @@ lemma matrix_works: assumes lf: "linear f" shows "matrix f *v x = f (x::real ^ 'n)" - apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult_commute) + apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult.commute) apply clarify apply (rule linear_componentwise[OF lf, symmetric]) done @@ -518,7 +518,7 @@ lemma matrix_vector_column: "(A::'a::comm_semiring_1^'n^_) *v x = setsum (\i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)" - by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult_commute) + by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult.commute) lemma adjoint_matrix: "adjoint(\x. (A::real^'n^'m) *v x) = (\x. transpose A *v x)" apply (rule adjoint_unique)