diff -r de51a86fc903 -r cc97b347b301 src/HOL/NthRoot.thy --- a/src/HOL/NthRoot.thy Fri Jul 04 20:07:08 2014 +0200 +++ b/src/HOL/NthRoot.thy Fri Jul 04 20:18:47 2014 +0200 @@ -222,7 +222,7 @@ simp: sgn_zero_iff sgn_mult power_mult[symmetric] abs_mult power_mult_distrib abs_sgn_eq) lemma real_root_commute: "root m (root n x) = root n (root m x)" - by (simp add: real_root_mult_exp [symmetric] mult_commute) + by (simp add: real_root_mult_exp [symmetric] mult.commute) text {* Monotonicity in first argument *} @@ -432,7 +432,7 @@ from n obtain m where m: "n = 2 * m" unfolding even_mult_two_ex .. from m have "sqrt (2 ^ n) = sqrt ((2 ^ m)\<^sup>2)" - by (simp only: power_mult[symmetric] mult_commute) + by (simp only: power_mult[symmetric] mult.commute) then show ?thesis using m by simp qed @@ -512,7 +512,7 @@ proof (rule right_inverse_eq [THEN iffD1, THEN sym]) show "sqrt x / x \ 0" by (simp add: divide_inverse nneg nz) show "inverse (sqrt x) / (sqrt x / x) = 1" - by (simp add: divide_inverse mult_assoc [symmetric] + by (simp add: divide_inverse mult.assoc [symmetric] power2_eq_square [symmetric] real_inv_sqrt_pow2 pos nz) qed qed @@ -603,7 +603,7 @@ "sqrt ((a + c)\<^sup>2 + (b + d)\<^sup>2) \ sqrt (a\<^sup>2 + b\<^sup>2) + sqrt (c\<^sup>2 + d\<^sup>2)" apply (rule power2_le_imp_le, simp) apply (simp add: power2_sum) -apply (simp only: mult_assoc distrib_left [symmetric]) +apply (simp only: mult.assoc distrib_left [symmetric]) apply (rule mult_left_mono) apply (rule power2_le_imp_le) apply (simp add: power2_sum power_mult_distrib)