diff -r de51a86fc903 -r cc97b347b301 src/HOL/Number_Theory/Gauss.thy --- a/src/HOL/Number_Theory/Gauss.thy Fri Jul 04 20:07:08 2014 +0200 +++ b/src/HOL/Number_Theory/Gauss.thy Fri Jul 04 20:18:47 2014 +0200 @@ -260,11 +260,11 @@ fix y::int and z::int assume "p - (y*a) mod p = (z*a) mod p" then have "[(y*a) mod p + (z*a) mod p = 0] (mod p)" - by (metis add_commute diff_eq_eq dvd_refl cong_int_def dvd_eq_mod_eq_0 mod_0) + by (metis add.commute diff_eq_eq dvd_refl cong_int_def dvd_eq_mod_eq_0 mod_0) moreover have "[y * a = (y*a) mod p] (mod p)" by (metis cong_int_def mod_mod_trivial) ultimately have "[a * (y + z) = 0] (mod p)" - by (metis cong_int_def mod_add_left_eq mod_add_right_eq mult_commute ring_class.ring_distribs(1)) + by (metis cong_int_def mod_add_left_eq mod_add_right_eq mult.commute ring_class.ring_distribs(1)) with p_prime a_nonzero p_a_relprime have a: "[y + z = 0] (mod p)" by (metis cong_prime_prod_zero_int) @@ -319,19 +319,19 @@ subsection {* Gauss' Lemma *} lemma aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A" -by (metis (no_types) minus_minus mult_commute mult_left_commute power_minus power_one) +by (metis (no_types) minus_minus mult.commute mult.left_commute power_minus power_one) theorem pre_gauss_lemma: "[a ^ nat((int p - 1) div 2) = (-1) ^ (card E)] (mod p)" proof - have "[setprod id A = setprod id F * setprod id D](mod p)" - by (auto simp add: prod_D_F_eq_prod_A mult_commute cong del:setprod.cong) + by (auto simp add: prod_D_F_eq_prod_A mult.commute cong del:setprod.cong) then have "[setprod id A = ((-1)^(card E) * setprod id E) * setprod id D] (mod p)" apply (rule cong_trans_int) apply (metis cong_scalar_int prod_F_zcong) done then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)" - by (metis C_prod_eq_D_times_E mult_commute mult_left_commute) + by (metis C_prod_eq_D_times_E mult.commute mult.left_commute) then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)" by (rule cong_trans_int) (metis C_B_zcong_prod cong_scalar2_int) then have "[setprod id A = ((-1)^(card E) * @@ -349,7 +349,7 @@ then have "[setprod id A = ((-1)^(card E) * a^(card A) * setprod id A)](mod p)" apply (rule cong_trans_int) - apply (simp add: cong_scalar2_int cong_scalar_int finite_A setprod_constant mult_assoc) + apply (simp add: cong_scalar2_int cong_scalar_int finite_A setprod_constant mult.assoc) done then have a: "[setprod id A * (-1)^(card E) = ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)" @@ -357,7 +357,7 @@ then have "[setprod id A * (-1)^(card E) = setprod id A * (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)" apply (rule cong_trans_int) - apply (simp add: a mult_commute mult_left_commute) + apply (simp add: a mult.commute mult.left_commute) done then have "[setprod id A * (-1)^(card E) = setprod id A * a^(card A)](mod p)" apply (rule cong_trans_int)