diff -r de51a86fc903 -r cc97b347b301 src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Fri Jul 04 20:07:08 2014 +0200 +++ b/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Fri Jul 04 20:18:47 2014 +0200 @@ -614,7 +614,7 @@ using f by (intro simple_function_partition) auto also have "\ = c * integral\<^sup>S M f" using f unfolding simple_integral_def - by (subst setsum_ereal_right_distrib) (auto simp: emeasure_nonneg mult_assoc Int_def conj_commute) + by (subst setsum_ereal_right_distrib) (auto simp: emeasure_nonneg mult.assoc Int_def conj_commute) finally show ?thesis . qed @@ -1129,7 +1129,7 @@ lemma nn_integral_multc: assumes "f \ borel_measurable M" "0 \ c" shows "(\\<^sup>+ x. f x * c \M) = integral\<^sup>N M f * c" - unfolding mult_commute[of _ c] nn_integral_cmult[OF assms] by simp + unfolding mult.commute[of _ c] nn_integral_cmult[OF assms] by simp lemma nn_integral_indicator[simp]: "A \ sets M \ (\\<^sup>+ x. indicator A x\M) = (emeasure M) A"