diff -r de51a86fc903 -r cc97b347b301 src/HOL/Quotient_Examples/Int_Pow.thy --- a/src/HOL/Quotient_Examples/Int_Pow.thy Fri Jul 04 20:07:08 2014 +0200 +++ b/src/HOL/Quotient_Examples/Int_Pow.thy Fri Jul 04 20:18:47 2014 +0200 @@ -53,7 +53,7 @@ proof (cases "m\n") have [simp]: "a \ carrier G" using `a \ _` by (rule Units_closed) case True - then obtain k where *:"m = k + n" and **:"m = n + k" by (metis Nat.le_iff_add nat_add_commute) + then obtain k where *:"m = k + n" and **:"m = n + k" by (metis Nat.le_iff_add add.commute) have "a (^) (m::nat) \ inv (a (^) (n::nat)) = a (^) k" using * by (auto simp add: nat_pow_mult[symmetric] m_assoc) also have "\ = inv (a (^) n) \ a (^) m" @@ -63,7 +63,7 @@ have [simp]: "a \ carrier G" using `a \ _` by (rule Units_closed) case False then obtain k where *:"n = k + m" and **:"n = m + k" - by (metis Nat.le_iff_add nat_add_commute nat_le_linear) + by (metis Nat.le_iff_add add.commute nat_le_linear) have "a (^) (m::nat) \ inv (a (^) (n::nat)) = inv(a (^) k)" using * by (auto simp add: nat_pow_mult[symmetric] m_assoc[symmetric] inv_mult_units) also have "\ = inv (a (^) n) \ a (^) m" @@ -86,7 +86,7 @@ proof(cases "b\c") have [simp]: "a \ carrier G" using `a \ _` by (rule Units_closed) case True - then obtain n where "b = n + c" by (metis Nat.le_iff_add nat_add_commute) + then obtain n where "b = n + c" by (metis Nat.le_iff_add add.commute) then have "d = n + e" using eq by arith from `b = _` have "a (^) b \ inv (a (^) c) = a (^) n" by (auto simp add: nat_pow_mult[symmetric] m_assoc) @@ -96,7 +96,7 @@ next have [simp]: "a \ carrier G" using `a \ _` by (rule Units_closed) case False - then obtain n where "c = n + b" by (metis Nat.le_iff_add nat_add_commute nat_le_linear) + then obtain n where "c = n + b" by (metis Nat.le_iff_add add.commute nat_le_linear) then have "e = n + d" using eq by arith from `c = _` have "a (^) b \ inv (a (^) c) = inv (a (^) n)" by (auto simp add: nat_pow_mult[symmetric] m_assoc[symmetric] inv_mult_units)