diff -r 19f627407264 -r ccab07d1196c src/HOL/Divides.thy --- a/src/HOL/Divides.thy Sat Dec 02 16:50:53 2017 +0000 +++ b/src/HOL/Divides.thy Sat Dec 02 16:50:53 2017 +0000 @@ -384,7 +384,7 @@ by (cases l rule: int_cases3) (auto simp del: of_nat_mult of_nat_add simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps - eucl_rel_int_iff divide_int_def modulo_int_def int_dvd_iff) + eucl_rel_int_iff divide_int_def modulo_int_def) next case (neg n) then show ?thesis @@ -392,7 +392,7 @@ by (cases l rule: int_cases3) (auto simp del: of_nat_mult of_nat_add simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps - eucl_rel_int_iff divide_int_def modulo_int_def int_dvd_iff) + eucl_rel_int_iff divide_int_def modulo_int_def) qed lemma divmod_int_unique: @@ -1155,7 +1155,7 @@ with that have "int (m mod q) = int (n mod q) \ int q dvd int (m - n)" by (simp only: of_nat_mod of_nat_diff) then show ?thesis - by (simp add: zdvd_int) + by simp qed lemma mod_eq_nat1E: