diff -r 2d9cf954a829 -r cce82e360c2f src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Mar 23 19:05:14 2015 +0100 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Mar 23 19:05:14 2015 +0100 @@ -133,7 +133,7 @@ apply (simp add: LIM_zero_iff [where l = D, symmetric]) apply (simp add: Lim_within dist_norm) apply (simp add: nonzero_norm_divide [symmetric]) - apply (simp add: 1 diff_add_eq_diff_diff ac_simps) + apply (simp add: 1 diff_diff_eq ac_simps) done qed @@ -299,14 +299,14 @@ "(f has_derivative f') (at x within s) \ bounded_linear f' \ (\e>0. \d>0. \y\s. norm(y - x) < d \ norm (f y - f x - f' (y - x)) \ e * norm (y - x))" unfolding has_derivative_within filterlim_def le_nhds_metric_le eventually_filtermap - eventually_at dist_norm diff_add_eq_diff_diff + eventually_at dist_norm diff_diff_eq by (force simp add: linear_0 bounded_linear.linear pos_divide_le_eq) lemma has_derivative_within_alt2: "(f has_derivative f') (at x within s) \ bounded_linear f' \ (\e>0. eventually (\y. norm (f y - f x - f' (y - x)) \ e * norm (y - x)) (at x within s))" unfolding has_derivative_within filterlim_def le_nhds_metric_le eventually_filtermap - eventually_at dist_norm diff_add_eq_diff_diff + eventually_at dist_norm diff_diff_eq by (force simp add: linear_0 bounded_linear.linear pos_divide_le_eq) lemma has_derivative_at_alt: