diff -r 0d36ace55e5a -r cd1a2bee5549 doc-src/TutorialI/Inductive/document/Mutual.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/TutorialI/Inductive/document/Mutual.tex Tue Jan 02 12:04:33 2001 +0100 @@ -0,0 +1,56 @@ +% +\begin{isabellebody}% +\def\isabellecontext{Mutual}% +% +\isamarkupsubsection{Mutual inductive definitions% +} +% +\begin{isamarkuptext}% +Just as there are datatypes defined by mutual recursion, there are sets defined +by mutual induction. As a trivial example we consider the even and odd natural numbers:% +\end{isamarkuptext}% +\isacommand{consts}\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline +\ \ \ \ \ \ \ odd\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline +\isanewline +\isacommand{inductive}\ even\ odd\isanewline +\isakeyword{intros}\isanewline +zero{\isacharcolon}\ \ {\isachardoublequote}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequote}\isanewline +evenI{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ odd\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline +oddI{\isacharcolon}\ \ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ odd{\isachardoublequote}% +\begin{isamarkuptext}% +\noindent +The simultaneous inductive definition of multiple sets is no different from that +of a single set, except for induction: just as for mutually recursive datatypes, +induction needs to involve all the simultaneously defined sets. In the above case, +the induction rule is called \isa{even{\isacharunderscore}odd{\isachardot}induct} (simply concenate the names +of the sets involved) and has the conclusion +\begin{isabelle}% +\ \ \ \ \ {\isacharparenleft}{\isacharquery}x\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isacharquery}y\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isacharquery}Q\ {\isacharquery}y{\isacharparenright}% +\end{isabelle} + +If we want to prove that all even numbers are divisible by 2, we have to generalize +the statement as follows:% +\end{isamarkuptext}% +\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}m\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ m{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}n\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequote}% +\begin{isamarkuptxt}% +\noindent +The proof is by rule induction. Because of the form of the induction theorem, it is +applied by \isa{rule} rather than \isa{erule} as for ordinary inductive definitions:% +\end{isamarkuptxt}% +\isacommand{apply}{\isacharparenleft}rule\ even{\isacharunderscore}odd{\isachardot}induct{\isacharparenright}% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline +\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ odd{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ Suc\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline +\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}% +\end{isabelle} +The first two subgoals are proved by simplification and the final one can be +proved in the same manner as in \S\ref{sec:rule-induction} +where the same subgoal was encountered before. +We do not show the proof script.% +\end{isamarkuptxt}% +\end{isabellebody}% +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "root" +%%% End: