diff -r 9caf6883f1f4 -r cd8dbfc272df src/HOL/Complex.thy --- a/src/HOL/Complex.thy Sun Sep 04 09:49:45 2011 -0700 +++ b/src/HOL/Complex.thy Sun Sep 04 10:05:52 2011 -0700 @@ -736,12 +736,6 @@ lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" by (auto simp add: DeMoivre) -lemma expi_add: "expi(a + b) = expi(a) * expi(b)" - by (rule exp_add) (* FIXME: redundant *) - -lemma expi_zero: "expi (0::complex) = 1" - by (rule exp_zero) (* FIXME: redundant *) - lemma complex_expi_Ex: "\a r. z = complex_of_real r * expi a" apply (insert rcis_Ex [of z]) apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])