diff -r 34618f031ba9 -r cdddd073bff8 src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Mon Feb 24 15:45:55 2014 +0000 +++ b/src/HOL/Set_Interval.thy Mon Feb 24 16:56:04 2014 +0000 @@ -1667,7 +1667,13 @@ lemma setprod_power_distrib: fixes f :: "'a \ 'b::comm_semiring_1" - shows "finite A \ setprod f A ^ n = setprod (\x. (f x)^n) A" - by (induct set: finite) (auto simp: power_mult_distrib) + shows "setprod f A ^ n = setprod (\x. (f x)^n) A" +proof (cases "finite A") + case True then show ?thesis + by (induct A rule: finite_induct) (auto simp add: power_mult_distrib) +next + case False then show ?thesis + by (metis setprod_infinite power_one) +qed end