diff -r 28b51effc5ed -r cdf7693bbe08 src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Mon Mar 14 14:37:47 2011 +0100 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Mon Mar 14 14:37:49 2011 +0100 @@ -1028,7 +1028,7 @@ qed simp qed -lemma setsum_of_pextreal: +lemma setsum_real_of_extreal: assumes "\x. x \ S \ \f x\ \ \" shows "(\x\S. real (f x)) = real (setsum f S)" proof - @@ -1062,17 +1062,6 @@ by induct (auto simp: extreal_right_distrib setsum_nonneg) qed simp -lemma setsum_real_of_extreal: - assumes "\x. x \ A \ \f x\ \ \" - shows "real (\x\A. f x) = (\x\A. real (f x))" -proof cases - assume "finite A" from this assms show ?thesis - proof induct - case (insert a A) then show ?case - by (simp add: real_of_extreal_add setsum_Inf) - qed simp -qed simp - lemma sums_extreal_positive: fixes f :: "nat \ extreal" assumes "\i. 0 \ f i" shows "f sums (SUP n. \i