diff -r 28b51effc5ed -r cdf7693bbe08 src/HOL/Probability/Sigma_Algebra.thy --- a/src/HOL/Probability/Sigma_Algebra.thy Mon Mar 14 14:37:47 2011 +0100 +++ b/src/HOL/Probability/Sigma_Algebra.thy Mon Mar 14 14:37:49 2011 +0100 @@ -1,7 +1,7 @@ -(* Title: HOL/Probability/Sigma_Algebra.thy - Author: Stefan Richter - Author: Markus Wenzel - Author: Lawrence Paulson +(* Title: Sigma_Algebra.thy + Author: Stefan Richter, Markus Wenzel, TU Muenchen + Plus material from the Hurd/Coble measure theory development, + translated by Lawrence Paulson. *) header {* Sigma Algebras *} @@ -70,6 +70,16 @@ "finite X \ X \ sets M \ Union X \ sets M" by (induct set: finite) (auto simp add: Un) +lemma (in algebra) finite_UN[intro]: + assumes "finite I" and "\i. i \ I \ A i \ sets M" + shows "(\i\I. A i) \ sets M" + using assms by induct auto + +lemma (in algebra) finite_INT[intro]: + assumes "finite I" "I \ {}" "\i. i \ I \ A i \ sets M" + shows "(\i\I. A i) \ sets M" + using assms by (induct rule: finite_ne_induct) auto + lemma algebra_iff_Int: "algebra M \ sets M \ Pow (space M) & {} \ sets M & @@ -149,11 +159,6 @@ ultimately show ?thesis by simp qed -lemma (in sigma_algebra) finite_UN: - assumes "finite I" and "\i. i \ I \ A i \ sets M" - shows "(\i\I. A i) \ sets M" - using assms by induct auto - lemma (in sigma_algebra) countable_INT [intro]: fixes A :: "'i::countable \ 'a set" assumes A: "A`X \ sets M" "X \ {}" @@ -167,11 +172,6 @@ ultimately show ?thesis by metis qed -lemma (in sigma_algebra) finite_INT: - assumes "finite I" "I \ {}" "\i. i \ I \ A i \ sets M" - shows "(\i\I. A i) \ sets M" - using assms by (induct rule: finite_ne_induct) auto - lemma algebra_Pow: "algebra \ space = sp, sets = Pow sp, \ = X \" by (auto simp add: algebra_def)