diff -r df4a03527b56 -r ce6320b9ef9b src/HOL/Data_Structures/Splay_Set.thy --- a/src/HOL/Data_Structures/Splay_Set.thy Tue Nov 17 15:51:48 2015 +0100 +++ b/src/HOL/Data_Structures/Splay_Set.thy Wed Nov 18 08:54:58 2015 +0100 @@ -1,6 +1,6 @@ (* Author: Tobias Nipkow -Function defs follow AFP entry Splay_Tree, proofs are new. +Function follow AFP entry Splay_Tree, proofs are new. *) section "Splay Tree Implementation of Sets" @@ -136,16 +136,6 @@ subsubsection "Proofs for insert" -text\Splay trees need two addition @{const sorted} lemmas:\ - -lemma sorted_snoc_le: - "ASSUMPTION(sorted(xs @ [x])) \ x \ y \ sorted (xs @ [y])" -by (auto simp add: Sorted_Less.sorted_snoc_iff ASSUMPTION_def) - -lemma sorted_Cons_le: - "ASSUMPTION(sorted(x # xs)) \ y \ x \ sorted (y # xs)" -by (auto simp add: Sorted_Less.sorted_Cons_iff ASSUMPTION_def) - lemma inorder_splay: "inorder(splay x t) = inorder t" by(induction x t rule: splay.induct) (auto simp: neq_Leaf_iff split: tree.split) @@ -157,14 +147,6 @@ by(induction x t arbitrary: l a r rule: splay.induct) (auto simp: sorted_lems sorted_Cons_le sorted_snoc_le splay_Leaf_iff split: tree.splits) -text\Splay trees need two addition @{const ins_list} lemmas:\ - -lemma ins_list_Cons: "sorted (x # xs) \ ins_list x xs = x # xs" -by (induction xs) auto - -lemma ins_list_snoc: "sorted (xs @ [x]) \ ins_list x xs = xs @ [x]" -by(induction xs) (auto simp add: sorted_mid_iff2) - lemma inorder_insert: "sorted(inorder t) \ inorder(insert x t) = ins_list x (inorder t)" using inorder_splay[of x t, symmetric] sorted_splay[of t x] @@ -173,15 +155,6 @@ subsubsection "Proofs for delete" -text\Splay trees need two addition @{const del_list} lemmas:\ - -lemma del_list_notin_Cons: "sorted (x # xs) \ del_list x xs = xs" -by(induction xs)(auto simp: sorted_Cons_iff) - -lemma del_list_sorted_app: - "sorted(xs @ [x]) \ del_list x (xs @ ys) = xs @ del_list x ys" -by (induction xs) (auto simp: sorted_mid_iff2) - lemma inorder_splay_maxD: "splay_max t = Node l a r \ sorted(inorder t) \ inorder l @ [a] = inorder t \ r = Leaf"