diff -r 4939494ed791 -r ce654b0e6d69 src/Doc/Prog_Prove/Logic.thy --- a/src/Doc/Prog_Prove/Logic.thy Tue Feb 13 14:24:50 2018 +0100 +++ b/src/Doc/Prog_Prove/Logic.thy Thu Feb 15 12:11:00 2018 +0100 @@ -97,7 +97,7 @@ \noquotes{@{term[source] "{t | x y. P}"}}\index{$IMP042@@{text"{t |x. P}"}}, where @{text "x y"} are those free variables in @{text t} that occur in @{text P}. -This is just a shorthand for @{term"{v. EX x y. v = t \ P}"}, where +This is just a shorthand for @{term"{v. \x y. v = t \ P}"}, where @{text v} is a new variable. For example, @{term"{x+y|x. x \ A}"} is short for \noquotes{@{term[source]"{v. \x. v = x+y \ x \ A}"}}. \end{warn} @@ -111,8 +111,8 @@ @{text "\"} & \texttt{\char`\\\char`\} & \texttt{Int} \end{tabular} \end{center} -Sets also allow bounded quantifications @{prop"ALL x : A. P"} and -@{prop"EX x : A. P"}. +Sets also allow bounded quantifications @{prop"\x \ A. P"} and +@{prop"\x \ A. P"}. For the more ambitious, there are also @{text"\"}\index{$HOLSet6@\isasymUnion} and @{text"\"}\index{$HOLSet7@\isasymInter}: @@ -703,7 +703,7 @@ that maps a binary predicate to another binary predicate: if @{text r} is of type @{text"\ \ \ \ bool"} then @{term "star r"} is again of type @{text"\ \ \ \ bool"}, and @{prop"star r x y"} means that @{text x} and @{text y} are in -the relation @{term"star r"}. Think @{term"r^*"} when you see @{term"star +the relation @{term"star r"}. Think @{term"r\<^sup>*"} when you see @{term"star r"}, because @{text"star r"} is meant to be the reflexive transitive closure. That is, @{prop"star r x y"} is meant to be true if from @{text x} we can reach @{text y} in finitely many @{text r} steps. This concept is naturally