diff -r 4939494ed791 -r ce654b0e6d69 src/HOL/Library/While_Combinator.thy --- a/src/HOL/Library/While_Combinator.thy Tue Feb 13 14:24:50 2018 +0100 +++ b/src/HOL/Library/While_Combinator.thy Thu Feb 15 12:11:00 2018 +0100 @@ -387,7 +387,7 @@ qualified fun rtrancl_while_invariant :: "'a list \ 'a set \ bool" where "rtrancl_while_invariant (ws, Z) = (x \ Z \ set ws \ Z \ distinct ws \ {(x,y). y \ set(f x)} `` (Z - set ws) \ Z \ - Z \ {(x,y). y \ set(f x)}^* `` {x} \ (\z\Z - set ws. p z))" + Z \ {(x,y). y \ set(f x)}\<^sup>* `` {x} \ (\z\Z - set ws. p z))" qualified lemma rtrancl_while_invariant: assumes inv: "rtrancl_while_invariant st" and test: "rtrancl_while_test st" @@ -400,8 +400,8 @@ lemma rtrancl_while_Some: assumes "rtrancl_while = Some(ws,Z)" shows "if ws = [] - then Z = {(x,y). y \ set(f x)}^* `` {x} \ (\z\Z. p z) - else \p(hd ws) \ hd ws \ {(x,y). y \ set(f x)}^* `` {x}" + then Z = {(x,y). y \ set(f x)}\<^sup>* `` {x} \ (\z\Z. p z) + else \p(hd ws) \ hd ws \ {(x,y). y \ set(f x)}\<^sup>* `` {x}" proof - have "rtrancl_while_invariant ([x],{x})" by simp with rtrancl_while_invariant have I: "rtrancl_while_invariant (ws,Z)"