diff -r 070703d83cfe -r cec875dcc59e src/HOL/Nat.thy --- a/src/HOL/Nat.thy Mon May 22 12:01:05 2023 +0200 +++ b/src/HOL/Nat.thy Tue May 23 12:31:23 2023 +0100 @@ -2029,6 +2029,17 @@ lemma antimono_iff_le_Suc: "antimono f \ (\n. f (Suc n) \ f n)" unfolding antimono_def by (auto intro: lift_Suc_antimono_le [of f]) +lemma strict_mono_Suc_iff: "strict_mono f \ (\n. f n < f (Suc n))" +proof (intro iffI strict_monoI) + assume *: "\n. f n < f (Suc n)" + fix m n :: nat assume "m < n" + thus "f m < f n" + by (induction rule: less_Suc_induct) (use * in auto) +qed (auto simp: strict_mono_def) + +lemma strict_mono_add: "strict_mono (\n::'a::linordered_semidom. n + k)" + by (auto simp: strict_mono_def) + lemma mono_nat_linear_lb: fixes f :: "nat \ nat" assumes "\m n. m < n \ f m < f n"