diff -r 18112403c809 -r cf947d1ec5ff src/HOL/Algebra/Sylow.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Algebra/Sylow.thy Tue Mar 18 18:07:06 2003 +0100 @@ -0,0 +1,395 @@ +(* Title: HOL/GroupTheory/Sylow + ID: $Id$ + Author: Florian Kammueller, with new proofs by L C Paulson + +See Florian Kamm\"uller and L. C. Paulson, + A Formal Proof of Sylow's theorem: + An Experiment in Abstract Algebra with Isabelle HOL + J. Automated Reasoning 23 (1999), 235-264 +*) + +header{*Sylow's theorem using locales*} + +theory Sylow = Coset: + +subsection {*Order of a Group and Lagrange's Theorem*} + +constdefs + order :: "(('a,'b) semigroup_scheme) => nat" + "order(S) == card(carrier S)" + +theorem (in coset) lagrange: + "[| finite(carrier G); subgroup H G |] + ==> card(rcosets G H) * card(H) = order(G)" +apply (simp (no_asm_simp) add: order_def setrcos_part_G [symmetric]) +apply (subst mult_commute) +apply (rule card_partition) + apply (simp add: setrcos_subset_PowG [THEN finite_subset]) + apply (simp add: setrcos_part_G) + apply (simp add: card_cosets_equal subgroup.subset) +apply (simp add: rcos_disjoint) +done + + +text{*The combinatorial argument is in theory Exponent*} + +locale sylow = coset + + fixes p and a and m and calM and RelM + assumes prime_p: "p \ prime" + and order_G: "order(G) = (p^a) * m" + and finite_G [iff]: "finite (carrier G)" + defines "calM == {s. s <= carrier(G) & card(s) = p^a}" + and "RelM == {(N1,N2). N1 \ calM & N2 \ calM & + (\g \ carrier(G). N1 = (N2 #> g) )}" + +lemma (in sylow) RelM_refl: "refl calM RelM" +apply (auto simp add: refl_def RelM_def calM_def) +apply (blast intro!: coset_mult_one [symmetric]) +done + +lemma (in sylow) RelM_sym: "sym RelM" +proof (unfold sym_def RelM_def, clarify) + fix y g + assume "y \ calM" + and g: "g \ carrier G" + hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def) + thus "\g'\carrier G. y = y #> g #> g'" + by (blast intro: g inv_closed) +qed + +lemma (in sylow) RelM_trans: "trans RelM" +by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc) + +lemma (in sylow) RelM_equiv: "equiv calM RelM" +apply (unfold equiv_def) +apply (blast intro: RelM_refl RelM_sym RelM_trans) +done + +lemma (in sylow) M_subset_calM_prep: "M' \ calM // RelM ==> M' <= calM" +apply (unfold RelM_def) +apply (blast elim!: quotientE) +done + +subsection{*Main Part of the Proof*} + + +locale sylow_central = sylow + + fixes H and M1 and M + assumes M_in_quot: "M \ calM // RelM" + and not_dvd_M: "~(p ^ Suc(exponent p m) dvd card(M))" + and M1_in_M: "M1 \ M" + defines "H == {g. g\carrier G & M1 #> g = M1}" + +lemma (in sylow_central) M_subset_calM: "M <= calM" +by (rule M_in_quot [THEN M_subset_calM_prep]) + +lemma (in sylow_central) card_M1: "card(M1) = p^a" +apply (cut_tac M_subset_calM M1_in_M) +apply (simp add: calM_def, blast) +done + +lemma card_nonempty: "0 < card(S) ==> S \ {}" +by force + +lemma (in sylow_central) exists_x_in_M1: "\x. x\M1" +apply (subgoal_tac "0 < card M1") + apply (blast dest: card_nonempty) +apply (cut_tac prime_p [THEN prime_imp_one_less]) +apply (simp (no_asm_simp) add: card_M1) +done + +lemma (in sylow_central) M1_subset_G [simp]: "M1 <= carrier G" +apply (rule subsetD [THEN PowD]) +apply (rule_tac [2] M1_in_M) +apply (rule M_subset_calM [THEN subset_trans]) +apply (auto simp add: calM_def) +done + +lemma (in sylow_central) M1_inj_H: "\f \ H\M1. inj_on f H" + proof - + from exists_x_in_M1 obtain m1 where m1M: "m1 \ M1".. + have m1G: "m1 \ carrier G" by (simp add: m1M M1_subset_G [THEN subsetD]) + show ?thesis + proof + show "inj_on (\z\H. m1 \ z) H" + by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1G) + show "restrict (op \ m1) H \ H \ M1" + proof (rule restrictI) + fix z assume zH: "z \ H" + show "m1 \ z \ M1" + proof - + from zH + have zG: "z \ carrier G" and M1zeq: "M1 #> z = M1" + by (auto simp add: H_def) + show ?thesis + by (rule subst [OF M1zeq], simp add: m1M zG rcosI) + qed + qed + qed + qed + + +subsection{*Discharging the Assumptions of @{text sylow_central}*} + +lemma (in sylow) EmptyNotInEquivSet: "{} \ calM // RelM" +by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self]) + +lemma (in sylow) existsM1inM: "M \ calM // RelM ==> \M1. M1 \ M" +apply (subgoal_tac "M \ {}") + apply blast +apply (cut_tac EmptyNotInEquivSet, blast) +done + +lemma (in sylow) zero_less_o_G: "0 < order(G)" +apply (unfold order_def) +apply (blast intro: one_closed zero_less_card_empty) +done + +lemma (in sylow) zero_less_m: "0 < m" +apply (cut_tac zero_less_o_G) +apply (simp add: order_G) +done + +lemma (in sylow) card_calM: "card(calM) = (p^a) * m choose p^a" +by (simp add: calM_def n_subsets order_G [symmetric] order_def) + +lemma (in sylow) zero_less_card_calM: "0 < card calM" +by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m) + +lemma (in sylow) max_p_div_calM: + "~ (p ^ Suc(exponent p m) dvd card(calM))" +apply (subgoal_tac "exponent p m = exponent p (card calM) ") + apply (cut_tac zero_less_card_calM prime_p) + apply (force dest: power_Suc_exponent_Not_dvd) +apply (simp add: card_calM zero_less_m [THEN const_p_fac]) +done + +lemma (in sylow) finite_calM: "finite calM" +apply (unfold calM_def) +apply (rule_tac B = "Pow (carrier G) " in finite_subset) +apply auto +done + +lemma (in sylow) lemma_A1: + "\M \ calM // RelM. ~ (p ^ Suc(exponent p m) dvd card(M))" +apply (rule max_p_div_calM [THEN contrapos_np]) +apply (simp add: finite_calM equiv_imp_dvd_card [OF _ RelM_equiv]) +done + + +subsubsection{*Introduction and Destruct Rules for @{term H}*} + +lemma (in sylow_central) H_I: "[|g \ carrier G; M1 #> g = M1|] ==> g \ H" +by (simp add: H_def) + +lemma (in sylow_central) H_into_carrier_G: "x \ H ==> x \ carrier G" +by (simp add: H_def) + +lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1" +by (simp add: H_def) + +lemma (in sylow_central) H_m_closed: "[| x\H; y\H|] ==> x \ y \ H" +apply (unfold H_def) +apply (simp add: coset_mult_assoc [symmetric] m_closed) +done + +lemma (in sylow_central) H_not_empty: "H \ {}" +apply (simp add: H_def) +apply (rule exI [of _ \], simp) +done + +lemma (in sylow_central) H_is_subgroup: "subgroup H G" +apply (rule subgroupI) +apply (rule subsetI) +apply (erule H_into_carrier_G) +apply (rule H_not_empty) +apply (simp add: H_def, clarify) +apply (erule_tac P = "%z. ?lhs(z) = M1" in subst) +apply (simp add: coset_mult_assoc ) +apply (blast intro: H_m_closed) +done + + +lemma (in sylow_central) rcosetGM1g_subset_G: + "[| g \ carrier G; x \ M1 #> g |] ==> x \ carrier G" +by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD]) + +lemma (in sylow_central) finite_M1: "finite M1" +by (rule finite_subset [OF M1_subset_G finite_G]) + +lemma (in sylow_central) finite_rcosetGM1g: "g\carrier G ==> finite (M1 #> g)" +apply (rule finite_subset) +apply (rule subsetI) +apply (erule rcosetGM1g_subset_G, assumption) +apply (rule finite_G) +done + +lemma (in sylow_central) M1_cardeq_rcosetGM1g: + "g \ carrier G ==> card(M1 #> g) = card(M1)" +by (simp (no_asm_simp) add: M1_subset_G card_cosets_equal setrcosI) + +lemma (in sylow_central) M1_RelM_rcosetGM1g: + "g \ carrier G ==> (M1, M1 #> g) \ RelM" +apply (simp (no_asm) add: RelM_def calM_def card_M1 M1_subset_G) +apply (rule conjI) + apply (blast intro: rcosetGM1g_subset_G) +apply (simp (no_asm_simp) add: card_M1 M1_cardeq_rcosetGM1g) +apply (rule bexI [of _ "inv g"]) +apply (simp_all add: coset_mult_assoc M1_subset_G) +done + + + +subsection{*Equal Cardinalities of @{term M} and @{term "rcosets G H"}*} + +text{*Injections between @{term M} and @{term "rcosets G H"} show that + their cardinalities are equal.*} + +lemma ElemClassEquiv: + "[| equiv A r; C\A // r |] ==> \x \ C. \y \ C. (x,y)\r" +apply (unfold equiv_def quotient_def sym_def trans_def, blast) +done + +lemma (in sylow_central) M_elem_map: + "M2 \ M ==> \g. g \ carrier G & M1 #> g = M2" +apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]) +apply (simp add: RelM_def) +apply (blast dest!: bspec) +done + +lemmas (in sylow_central) M_elem_map_carrier = + M_elem_map [THEN someI_ex, THEN conjunct1] + +lemmas (in sylow_central) M_elem_map_eq = + M_elem_map [THEN someI_ex, THEN conjunct2] + +lemma (in sylow_central) M_funcset_setrcos_H: + "(%x:M. H #> (SOME g. g \ carrier G & M1 #> g = x)) \ M \ rcosets G H" +apply (rule setrcosI [THEN restrictI]) +apply (rule H_is_subgroup [THEN subgroup.subset]) +apply (erule M_elem_map_carrier) +done + +lemma (in sylow_central) inj_M_GmodH: "\f \ M\rcosets G H. inj_on f M" +apply (rule bexI) +apply (rule_tac [2] M_funcset_setrcos_H) +apply (rule inj_onI, simp) +apply (rule trans [OF _ M_elem_map_eq]) +prefer 2 apply assumption +apply (rule M_elem_map_eq [symmetric, THEN trans], assumption) +apply (rule coset_mult_inv1) +apply (erule_tac [2] M_elem_map_carrier)+ +apply (rule_tac [2] M1_subset_G) +apply (rule coset_join1 [THEN in_H_imp_eq]) +apply (rule_tac [3] H_is_subgroup) +prefer 2 apply (blast intro: m_closed M_elem_map_carrier inv_closed) +apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_def) +done + + +(** the opposite injection **) + +lemma (in sylow_central) H_elem_map: + "H1\rcosets G H ==> \g. g \ carrier G & H #> g = H1" +by (auto simp add: setrcos_eq) + +lemmas (in sylow_central) H_elem_map_carrier = + H_elem_map [THEN someI_ex, THEN conjunct1] + +lemmas (in sylow_central) H_elem_map_eq = + H_elem_map [THEN someI_ex, THEN conjunct2] + + +lemma EquivElemClass: + "[|equiv A r; M\A // r; M1\M; (M1, M2)\r |] ==> M2\M" +apply (unfold equiv_def quotient_def sym_def trans_def, blast) +done + +lemma (in sylow_central) setrcos_H_funcset_M: + "(\C \ rcosets G H. M1 #> (@g. g \ carrier G \ H #> g = C)) + \ rcosets G H \ M" +apply (simp add: setrcos_eq) +apply (fast intro: someI2 + intro!: restrictI M1_in_M + EquivElemClass [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g]) +done + +text{*close to a duplicate of @{text inj_M_GmodH}*} +lemma (in sylow_central) inj_GmodH_M: + "\g \ rcosets G H\M. inj_on g (rcosets G H)" +apply (rule bexI) +apply (rule_tac [2] setrcos_H_funcset_M) +apply (rule inj_onI) +apply (simp) +apply (rule trans [OF _ H_elem_map_eq]) +prefer 2 apply assumption +apply (rule H_elem_map_eq [symmetric, THEN trans], assumption) +apply (rule coset_mult_inv1) +apply (erule_tac [2] H_elem_map_carrier)+ +apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset]) +apply (rule coset_join2) +apply (blast intro: m_closed inv_closed H_elem_map_carrier) +apply (rule H_is_subgroup) +apply (simp add: H_I coset_mult_inv2 M1_subset_G H_elem_map_carrier) +done + +lemma (in sylow_central) calM_subset_PowG: "calM <= Pow(carrier G)" +by (auto simp add: calM_def) + + +lemma (in sylow_central) finite_M: "finite M" +apply (rule finite_subset) +apply (rule M_subset_calM [THEN subset_trans]) +apply (rule calM_subset_PowG, blast) +done + +lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets G H)" +apply (insert inj_M_GmodH inj_GmodH_M) +apply (blast intro: card_bij finite_M H_is_subgroup + setrcos_subset_PowG [THEN finite_subset] + finite_Pow_iff [THEN iffD2]) +done + +lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)" +by (simp add: cardMeqIndexH lagrange H_is_subgroup) + +lemma (in sylow_central) lemma_leq1: "p^a <= card(H)" +apply (rule dvd_imp_le) + apply (rule div_combine [OF prime_p not_dvd_M]) + prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup) +apply (simp add: index_lem order_G power_add mult_dvd_mono power_exponent_dvd + zero_less_m) +done + +lemma (in sylow_central) lemma_leq2: "card(H) <= p^a" +apply (subst card_M1 [symmetric]) +apply (cut_tac M1_inj_H) +apply (blast intro!: M1_subset_G intro: + card_inj H_into_carrier_G finite_subset [OF _ finite_G]) +done + +lemma (in sylow_central) card_H_eq: "card(H) = p^a" +by (blast intro: le_anti_sym lemma_leq1 lemma_leq2) + +lemma (in sylow) sylow_thm: "\H. subgroup H G & card(H) = p^a" +apply (cut_tac lemma_A1, clarify) +apply (frule existsM1inM, clarify) +apply (subgoal_tac "sylow_central G p a m M1 M") + apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq) +apply (simp add: sylow_central_def sylow_central_axioms_def prems) +done + +text{*Needed because the locale's automatic definition refers to + @{term "semigroup G"} and @{term "group_axioms G"} rather than + simply to @{term "group G"}.*} +lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)" +by (simp add: sylow_def group_def) + +theorem sylow_thm: + "[|p \ prime; group(G); order(G) = (p^a) * m; finite (carrier G)|] + ==> \H. subgroup H G & card(H) = p^a" +apply (rule sylow.sylow_thm [of G p a m]) +apply (simp add: sylow_eq sylow_axioms_def) +done + +end