diff -r beccb2a0410f -r cfb6c22a5636 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Wed Aug 05 17:56:33 2020 +0100 +++ b/src/HOL/Finite_Set.thy Wed Aug 05 19:12:08 2020 +0100 @@ -1492,6 +1492,9 @@ lemma card_Un_disjoint: "finite A \ finite B \ A \ B = {} \ card (A \ B) = card A + card B" using card_Un_Int [of A B] by simp +lemma card_Un_disjnt: "\finite A; finite B; disjnt A B\ \ card (A \ B) = card A + card B" + by (simp add: card_Un_disjoint disjnt_def) + lemma card_Un_le: "card (A \ B) \ card A + card B" proof (cases "finite A \ finite B") case True