diff -r bc7982c54e37 -r d323e7773aa8 src/HOL/NSA/HyperDef.thy --- a/src/HOL/NSA/HyperDef.thy Mon Apr 26 11:34:19 2010 +0200 +++ b/src/HOL/NSA/HyperDef.thy Mon Apr 26 15:37:50 2010 +0200 @@ -140,12 +140,12 @@ lemma of_hypreal_inverse [simp]: "\x. of_hypreal (inverse x) = - inverse (of_hypreal x :: 'a::{real_div_algebra,division_ring_inverse_zero} star)" + inverse (of_hypreal x :: 'a::{real_div_algebra, division_ring_inverse_zero} star)" by transfer (rule of_real_inverse) lemma of_hypreal_divide [simp]: "\x y. of_hypreal (x / y) = - (of_hypreal x / of_hypreal y :: 'a::{real_field,division_ring_inverse_zero} star)" + (of_hypreal x / of_hypreal y :: 'a::{real_field, field_inverse_zero} star)" by transfer (rule of_real_divide) lemma of_hypreal_eq_iff [simp]: @@ -454,7 +454,7 @@ by transfer (rule field_power_not_zero) lemma hyperpow_inverse: - "\r n. r \ (0::'a::{division_ring_inverse_zero,field} star) + "\r n. r \ (0::'a::field_inverse_zero star) \ inverse (r pow n) = (inverse r) pow n" by transfer (rule power_inverse)