diff -r bc7982c54e37 -r d323e7773aa8 src/HOL/RealVector.thy --- a/src/HOL/RealVector.thy Mon Apr 26 11:34:19 2010 +0200 +++ b/src/HOL/RealVector.thy Mon Apr 26 15:37:50 2010 +0200 @@ -207,7 +207,7 @@ by (rule inverse_unique, simp) lemma inverse_scaleR_distrib: - fixes x :: "'a::{real_div_algebra,division_ring_inverse_zero}" + fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}" shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" apply (case_tac "a = 0", simp) apply (case_tac "x = 0", simp) @@ -250,7 +250,7 @@ lemma of_real_inverse [simp]: "of_real (inverse x) = - inverse (of_real x :: 'a::{real_div_algebra,division_ring_inverse_zero})" + inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})" by (simp add: of_real_def inverse_scaleR_distrib) lemma nonzero_of_real_divide: @@ -260,7 +260,7 @@ lemma of_real_divide [simp]: "of_real (x / y) = - (of_real x / of_real y :: 'a::{real_field,division_ring_inverse_zero})" + (of_real x / of_real y :: 'a::{real_field, field_inverse_zero})" by (simp add: divide_inverse) lemma of_real_power [simp]: @@ -370,7 +370,7 @@ done lemma Reals_inverse [simp]: - fixes a :: "'a::{real_div_algebra,division_ring_inverse_zero}" + fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}" shows "a \ Reals \ inverse a \ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) @@ -386,7 +386,7 @@ done lemma Reals_divide [simp]: - fixes a b :: "'a::{real_field,division_ring_inverse_zero}" + fixes a b :: "'a::{real_field, field_inverse_zero}" shows "\a \ Reals; b \ Reals\ \ a / b \ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) @@ -726,7 +726,7 @@ done lemma norm_inverse: - fixes a :: "'a::{real_normed_div_algebra,division_ring_inverse_zero}" + fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}" shows "norm (inverse a) = inverse (norm a)" apply (case_tac "a = 0", simp) apply (erule nonzero_norm_inverse) @@ -738,7 +738,7 @@ by (simp add: divide_inverse norm_mult nonzero_norm_inverse) lemma norm_divide: - fixes a b :: "'a::{real_normed_field,division_ring_inverse_zero}" + fixes a b :: "'a::{real_normed_field, field_inverse_zero}" shows "norm (a / b) = norm a / norm b" by (simp add: divide_inverse norm_mult norm_inverse)