diff -r aae9c9a0735e -r d366fa5551ef src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Tue Aug 23 07:12:05 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Tue Aug 23 14:11:02 2011 -0700 @@ -96,11 +96,7 @@ unfolding subspace_def by auto lemma span_eq[simp]: "(span s = s) <-> subspace s" -proof- - { fix f assume "Ball f subspace" - hence "subspace (Inter f)" using subspace_Inter[of f] unfolding Ball_def by auto } - thus ?thesis using hull_eq[of subspace s] span_def by auto -qed + unfolding span_def by (rule hull_eq, rule subspace_Inter) lemma basis_inj_on: "d \ {.. inj_on (basis :: nat => 'n::euclidean_space) d" by(auto simp add: inj_on_def euclidean_eq[where 'a='n]) @@ -291,8 +287,6 @@ shows "scaleR 2 x = x + x" unfolding one_add_one_is_two [symmetric] scaleR_left_distrib by simp -declare euclidean_simps[simp] - lemma vector_choose_size: "0 <= c ==> \(x::'a::euclidean_space). norm x = c" apply (rule exI[where x="c *\<^sub>R basis 0 ::'a"]) using DIM_positive[where 'a='a] by auto @@ -973,7 +967,7 @@ lemma convex_box: fixes a::"'a::euclidean_space" assumes "\i. i convex {x. P i x}" shows "convex {x. \ii x$$i)}" by (rule convex_box) (simp add: atLeast_def[symmetric] convex_real_interval) @@ -1641,7 +1635,7 @@ hence "V <= affine hull T" using B_def assms translation_inverse_subset[of a V "span B"] by auto moreover have "T<=V" using T_def B_def a_def assms by auto ultimately have "affine hull T = affine hull V" - by (metis Int_absorb1 Int_absorb2 Int_commute Int_lower2 assms hull_hull hull_mono) + by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono) moreover have "S<=T" using T_def B_def translation_inverse_subset[of a "S-{a}" B] by auto moreover have "~(affine_dependent T)" using T_def affine_dependent_translation_eq[of "insert 0 B"] affine_dependent_imp_dependent2 B_def by auto ultimately show ?thesis using `T<=V` by auto @@ -1675,7 +1669,7 @@ lemma affine_hull_nonempty: "(S ~= {}) <-> affine hull S ~= {}" proof- -fix S have "(S = {}) ==> affine hull S = {}"using affine_hull_empty by auto +have "(S = {}) ==> affine hull S = {}"using affine_hull_empty by auto moreover have "affine hull S = {} ==> S = {}" unfolding hull_def by auto ultimately show "(S ~= {}) <-> affine hull S ~= {}" by blast qed @@ -2076,7 +2070,7 @@ apply (simp add: rel_interior, safe) apply (force simp add: open_contains_ball) apply (rule_tac x="ball x e" in exI) - apply (simp add: centre_in_ball) + apply simp done lemma rel_interior_ball: @@ -2087,7 +2081,7 @@ apply (simp add: rel_interior, safe) apply (force simp add: open_contains_cball) apply (rule_tac x="ball x e" in exI) - apply (simp add: open_ball centre_in_ball subset_trans [OF ball_subset_cball]) + apply (simp add: subset_trans [OF ball_subset_cball]) apply auto done @@ -3370,7 +3364,7 @@ hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis 0" in ballE) defer apply(erule_tac x="basis 0" in ballE) unfolding Ball_def mem_cball dist_norm using DIM_positive[where 'a='a] - by(auto simp add:norm_basis[unfolded One_nat_def]) + by auto case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI) apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE) unfolding norm_zero scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof- @@ -3508,7 +3502,7 @@ hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: field_simps) hence "u * a + v * b \ b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) } ultimately show "u *\<^sub>R x + v *\<^sub>R y \ s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)]) - using as(3-) DIM_positive[where 'a='a] by(auto simp add:euclidean_simps) qed + using as(3-) DIM_positive[where 'a='a] by auto qed lemma is_interval_connected: fixes s :: "('a::euclidean_space) set" @@ -3570,7 +3564,7 @@ shows "\x\{a..b}. (f x)$$k = y" apply(subst neg_equal_iff_equal[THEN sym]) using ivt_increasing_component_on_1[of a b "\x. - f x" k "- y"] using assms using continuous_on_neg - by (auto simp add:euclidean_simps) + by auto lemma ivt_decreasing_component_1: fixes f::"real \ 'a::euclidean_space" shows "a \ b \ \x\{a .. b}. continuous (at x) f @@ -3624,18 +3618,18 @@ by auto next let ?y = "\j. if x$$j = 0 then 0 else (x$$j - x$$i) / (1 - x$$i)" case False hence *:"x = x$$i *\<^sub>R (\\ j. if x$$j = 0 then 0 else 1) + (1 - x$$i) *\<^sub>R (\\ j. ?y j)" - apply(subst euclidean_eq) by(auto simp add: field_simps euclidean_simps) + apply(subst euclidean_eq) by(auto simp add: field_simps) { fix j assume j:"j 0 \ 0 \ (x $$ j - x $$ i) / (1 - x $$ i)" "(x $$ j - x $$ i) / (1 - x $$ i) \ 1" apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01 using Suc(2)[unfolded mem_interval, rule_format, of j] using j - by(auto simp add:field_simps euclidean_simps) + by(auto simp add:field_simps) hence "0 \ ?y j \ ?y j \ 1" by auto } moreover have "i\{j. j x$$j \ 0} - {j. j ((\\ j. ?y j)::'a) $$ j \ 0}" using i01 using i'(3) by auto hence "{j. j x$$j \ 0} \ {j. j ((\\ j. ?y j)::'a) $$ j \ 0}" using i'(3) by blast hence **:"{j. j ((\\ j. ?y j)::'a) $$ j \ 0} \ {j. j x$$j \ 0}" apply - apply rule - by( auto simp add:euclidean_simps) + by auto have "card {j. j ((\\ j. ?y j)::'a) $$ j \ 0} \ n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format]) @@ -3671,14 +3665,14 @@ fix y assume as:"y\{x - ?d .. x + ?d}" { fix i assume i:"i d + y $$ i" "y $$ i \ d + x $$ i" using as[unfolded mem_interval, THEN spec[where x=i]] i - by(auto simp add:euclidean_simps) + by auto hence "1 \ inverse d * (x $$ i - y $$ i)" "1 \ inverse d * (y $$ i - x $$ i)" apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym] using assms by(auto simp add: field_simps) hence "inverse d * (x $$ i * 2) \ 2 + inverse d * (y $$ i * 2)" "inverse d * (y $$ i * 2) \ 2 + inverse d * (x $$ i * 2)" by(auto simp add:field_simps) } hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \ {0..\\ i.1}" unfolding mem_interval using assms - by(auto simp add: euclidean_simps field_simps) + by(auto simp add: field_simps) thus "\z\{0..\\ i.1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) using assms by auto next @@ -3688,7 +3682,7 @@ apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le) using assms by auto thus "y \ {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval] - apply(erule_tac x=i in allE) using assms by(auto simp add: euclidean_simps) qed + apply(erule_tac x=i in allE) using assms by auto qed obtain s where "finite s" "{0::'a..\\ i.1} = convex hull s" using unit_cube_convex_hull by auto thus ?thesis apply(rule_tac that[of "(\y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed @@ -3774,7 +3768,7 @@ have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) let ?d = "(\\ i. d)::'a" obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto - have "x\{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by(auto simp add:euclidean_simps) + have "x\{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by auto hence "c\{}" using c by auto def k \ "Max (f ` c)" have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)]) @@ -3783,7 +3777,7 @@ have e:"e = setsum (\i. d) {.. e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono) - using z[unfolded mem_interval] apply(erule_tac x=i in allE) by(auto simp add:euclidean_simps) qed + using z[unfolded mem_interval] apply(erule_tac x=i in allE) by auto qed hence k:"\y\{x - ?d..x + ?d}. f y \ k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption unfolding k_def apply(rule, rule Max_ge) using c(1) by auto have "d \ e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 by auto @@ -3792,9 +3786,9 @@ hence "\y\cball x d. abs (f y) \ k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof fix y assume y:"y\cball x d" { fix i assume "i y $$ i" "y $$ i \ x $$ i + d" - using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by(auto simp add:euclidean_simps) } + using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by auto } thus "f y \ k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm - by(auto simp add:euclidean_simps) qed + by auto qed hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous) apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) apply force @@ -3929,10 +3923,10 @@ proof(rule,rule) fix i assume i:"iR a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $$ i = ((norm (a - b) - norm (a - x)) * (a $$ i) + norm (a - x) * (b $$ i)) / norm (a - b)" - using Fal by(auto simp add: field_simps euclidean_simps) + using Fal by(auto simp add: field_simps) also have "\ = x$$i" apply(rule divide_eq_imp[OF Fal]) unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq] apply- - apply(subst (asm) euclidean_eq) using i apply(erule_tac x=i in allE) by(auto simp add:field_simps euclidean_simps) + apply(subst (asm) euclidean_eq) using i apply(erule_tac x=i in allE) by(auto simp add:field_simps) finally show "x $$ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $$ i" by auto qed(insert Fal2, auto) qed qed @@ -3943,7 +3937,7 @@ proof- have *:"\x y z. x = (1/2::real) *\<^sub>R z \ y = (1/2) *\<^sub>R z \ norm z = norm x + norm y" by auto show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *) unfolding euclidean_eq[where 'a='a] - by(auto simp add:field_simps euclidean_simps) qed + by(auto simp add:field_simps) qed lemma between_mem_convex_hull: "between (a,b) x \ x \ convex hull {a,b}" @@ -3962,7 +3956,7 @@ have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule arg_cong[where f=norm]) using `e>0` - by(auto simp add: euclidean_simps euclidean_eq[where 'a='a] field_simps) + by(auto simp add: euclidean_eq[where 'a='a] field_simps) also have "\ = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:arg_cong[where f=norm] simp add: algebra_simps) also have "\ < d" using as[unfolded dist_norm] and `e>0` by(auto simp add:pos_divide_less_eq[OF `e>0`] mult_commute) @@ -4042,7 +4036,7 @@ apply(rule_tac x="\y. inner y x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) unfolding sumbas apply safe unfolding not_less basis_zero unfolding substdbasis_expansion_unique[OF assms] euclidean_component_def[THEN sym] - using as(2,3) by(auto simp add:dot_basis not_less basis_zero) + using as(2,3) by(auto simp add:dot_basis not_less) qed qed lemma std_simplex: @@ -4058,11 +4052,11 @@ fix x::"'a" and e assume "0xa. dist x xa < e \ (\x xa $$ x) \ setsum (op $$ xa) {.. 1" show "(\xa setsum (op $$ x) {..0` - unfolding dist_norm by(auto simp add: inner_simps euclidean_component_def dot_basis elim!:allE[where x=i]) + unfolding dist_norm by (auto elim!:allE[where x=i]) next have **:"dist x (x + (e / 2) *\<^sub>R basis 0) < e" using `e>0` unfolding dist_norm by(auto intro!: mult_strict_left_mono) have "\i. i (x + (e / 2) *\<^sub>R basis 0) $$ i = x$$i + (if i = 0 then e/2 else 0)" - unfolding euclidean_component_def by(auto simp add:inner_simps dot_basis) + by auto hence *:"setsum (op $$ (x + (e / 2) *\<^sub>R basis 0)) {..i. x$$i + (if 0 = i then e/2 else 0)) {..R basis 0)) {..i. x$$i + (if a = i then e/2 else 0)) d" by(rule_tac setsum_cong, auto) have h1: "(ALL i (x + (e / 2) *\<^sub>R basis a) $$ i = 0)" using as[THEN spec[where x="x + (e / 2) *\<^sub>R basis a"]] `a:d` using x0 - by(auto simp add: norm_basis elim:allE[where x=a]) + by(auto elim:allE[where x=a]) have "setsum (op $$ x) d < setsum (op $$ (x + (e / 2) *\<^sub>R basis a)) d" unfolding * setsum_addf using `0 \ 1" using ** h1 as[rule_format, of "x + (e / 2) *\<^sub>R basis a"] by auto @@ -4776,7 +4770,7 @@ } from this obtain mS where mS_def: "!S : I. (mS(S) > (1 :: real) & (!e. (e>1 & e<=mS(S)) --> (1-e)*\<^sub>R x+ e *\<^sub>R z : S))" by metis obtain e where e_def: "e=Min (mS ` I)" by auto - have "e : (mS ` I)" using e_def assms `I ~= {}` by (simp add: Min_in) + have "e : (mS ` I)" using e_def assms `I ~= {}` by simp hence "e>(1 :: real)" using mS_def by auto moreover have "!S : I. e<=mS(S)" using e_def assms by auto ultimately have "EX e>1. (1 - e) *\<^sub>R x + e *\<^sub>R z : Inter I" using mS_def by auto