diff -r aae9c9a0735e -r d366fa5551ef src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Tue Aug 23 07:12:05 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Tue Aug 23 14:11:02 2011 -0700 @@ -129,19 +129,19 @@ lemma euclidean_component_zero [simp]: "0 $$ i = 0" unfolding euclidean_component_def by (rule inner_zero_right) -lemma euclidean_component_add: "(x + y) $$ i = x $$ i + y $$ i" +lemma euclidean_component_add [simp]: "(x + y) $$ i = x $$ i + y $$ i" unfolding euclidean_component_def by (rule inner_add_right) -lemma euclidean_component_diff: "(x - y) $$ i = x $$ i - y $$ i" +lemma euclidean_component_diff [simp]: "(x - y) $$ i = x $$ i - y $$ i" unfolding euclidean_component_def by (rule inner_diff_right) -lemma euclidean_component_minus: "(- x) $$ i = - (x $$ i)" +lemma euclidean_component_minus [simp]: "(- x) $$ i = - (x $$ i)" unfolding euclidean_component_def by (rule inner_minus_right) -lemma euclidean_component_scaleR: "(scaleR a x) $$ i = a * (x $$ i)" +lemma euclidean_component_scaleR [simp]: "(scaleR a x) $$ i = a * (x $$ i)" unfolding euclidean_component_def by (rule inner_scaleR_right) -lemma euclidean_component_setsum: "(\x\A. f x) $$ i = (\x\A. f x $$ i)" +lemma euclidean_component_setsum [simp]: "(\x\A. f x) $$ i = (\x\A. f x $$ i)" unfolding euclidean_component_def by (rule inner_setsum_right) lemma euclidean_eqI: @@ -183,7 +183,6 @@ fixes x :: "'a::euclidean_space" shows "x = (\iR basis i)" apply (rule euclidean_eqI) - apply (simp add: euclidean_component_setsum euclidean_component_scaleR) apply (simp add: if_distrib setsum_delta cong: if_cong) done @@ -194,8 +193,7 @@ lemma euclidean_lambda_beta [simp]: "((\\ i. f i)::'a::euclidean_space) $$ j = (if j < DIM('a) then f j else 0)" - by (auto simp: euclidean_component_setsum euclidean_component_scaleR - Chi_def if_distrib setsum_cases intro!: setsum_cong) + by (auto simp: Chi_def if_distrib setsum_cases intro!: setsum_cong) lemma euclidean_lambda_beta': "j < DIM('a) \ ((\\ i. f i)::'a::euclidean_space) $$ j = f j"