diff -r a9ed5fcc5e39 -r d41a8ba25b67 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Thu May 28 23:03:12 2009 -0700 +++ b/src/HOL/Transcendental.thy Fri May 29 09:22:56 2009 -0700 @@ -438,7 +438,7 @@ assumes k: "0 < (k::real)" assumes le: "\h. \h \ 0; norm h < k\ \ norm (f h) \ K * norm h" shows "f -- 0 --> 0" -unfolding LIM_def diff_0_right +unfolding LIM_eq diff_0_right proof (safe) let ?h = "of_real (k / 2)::'a" have "?h \ 0" and "norm ?h < k" using k by simp_all @@ -2145,7 +2145,7 @@ lemma lemma_tan_total: "0 < y ==> \x. 0 < x & x < pi/2 & y < tan x" apply (cut_tac LIM_cos_div_sin) -apply (simp only: LIM_def) +apply (simp only: LIM_eq) apply (drule_tac x = "inverse y" in spec, safe, force) apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe) apply (rule_tac x = "(pi/2) - e" in exI)