diff -r d96550db3d77 -r d4d33a4d7548 src/HOL/Old_Number_Theory/Euler.thy --- a/src/HOL/Old_Number_Theory/Euler.thy Tue Sep 06 16:30:39 2011 -0700 +++ b/src/HOL/Old_Number_Theory/Euler.thy Tue Sep 06 19:03:41 2011 -0700 @@ -67,7 +67,7 @@ then have "[j * j = (a * MultInv p j) * j] (mod p)" by (auto simp add: zcong_scalar) then have a:"[j * j = a * (MultInv p j * j)] (mod p)" - by (auto simp add: zmult_ac) + by (auto simp add: mult_ac) have "[j * j = a] (mod p)" proof - from assms(1,2,4) have "[MultInv p j * j = 1] (mod p)" @@ -148,7 +148,7 @@ c = "a * (x * MultInv p x)" in zcong_trans, force) apply (frule_tac p = p and x = x in MultInv_prop2, auto) apply (metis StandardRes_SRStar_prop3 mult_1_right mult_commute zcong_sym zcong_zmult_prop1) - apply (auto simp add: zmult_ac) + apply (auto simp add: mult_ac) done lemma aux1: "[| 0 < x; (x::int) < a; x \ (a - 1) |] ==> x < a - 1" @@ -237,7 +237,7 @@ then have "a ^ (nat p) = a ^ (1 + (nat p - 1))" by (auto simp add: diff_add_assoc) also have "... = (a ^ 1) * a ^ (nat(p) - 1)" - by (simp only: zpower_zadd_distrib) + by (simp only: power_add) also have "... = a * a ^ (nat(p) - 1)" by auto finally show ?thesis . @@ -286,7 +286,7 @@ apply (auto simp add: zpower_zpower) apply (rule zcong_trans) apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"]) - apply (metis Little_Fermat even_div_2_prop2 mult_Bit0 number_of_is_id odd_minus_one_even one_is_num_one zmult_1 aux__2) + apply (metis Little_Fermat even_div_2_prop2 mult_Bit0 number_of_is_id odd_minus_one_even one_is_num_one mult_1 aux__2) done