diff -r d96550db3d77 -r d4d33a4d7548 src/HOL/Old_Number_Theory/IntPrimes.thy --- a/src/HOL/Old_Number_Theory/IntPrimes.thy Tue Sep 06 16:30:39 2011 -0700 +++ b/src/HOL/Old_Number_Theory/IntPrimes.thy Tue Sep 06 19:03:41 2011 -0700 @@ -43,7 +43,7 @@ lemma zrelprime_zdvd_zmult_aux: "zgcd n k = 1 ==> k dvd m * n ==> 0 \ m ==> k dvd m" - by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs zmult_1_right) + by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs mult_1_right) lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m" apply (case_tac "0 \ m") @@ -93,7 +93,7 @@ apply (simp add: zgcd_greatest_iff) apply (rule_tac n = k in zrelprime_zdvd_zmult) prefer 2 - apply (simp add: zmult_commute) + apply (simp add: mult_commute) apply (metis zgcd_1 zgcd_commute zgcd_left_commute) done @@ -142,8 +142,8 @@ "[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)" apply (rule_tac b = "b * c" in zcong_trans) apply (unfold zcong_def) - apply (metis zdiff_zmult_distrib2 dvd_mult zmult_commute) - apply (metis zdiff_zmult_distrib2 dvd_mult) + apply (metis right_diff_distrib dvd_mult mult_commute) + apply (metis right_diff_distrib dvd_mult) done lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)" @@ -165,7 +165,7 @@ apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst) prefer 4 apply (simp add: zdvd_reduce) - apply (simp_all add: zdiff_zmult_distrib zmult_commute zdiff_zmult_distrib2) + apply (simp_all add: left_diff_distrib mult_commute right_diff_distrib) done lemma zcong_cancel: @@ -179,7 +179,7 @@ apply (subst zcong_sym) apply (unfold zcong_def) apply (rule_tac [!] zrelprime_zdvd_zmult) - apply (simp_all add: zdiff_zmult_distrib) + apply (simp_all add: left_diff_distrib) apply (subgoal_tac "m dvd (-(a * k - b * k))") apply simp apply (subst dvd_minus_iff, assumption) @@ -188,7 +188,7 @@ lemma zcong_cancel2: "0 \ m ==> zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)" - by (simp add: zmult_commute zcong_cancel) + by (simp add: mult_commute zcong_cancel) lemma zcong_zgcd_zmult_zmod: "[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1 @@ -197,9 +197,9 @@ apply (subgoal_tac "m dvd n * ka") apply (subgoal_tac "m dvd ka") apply (case_tac [2] "0 \ ka") - apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult) - apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute) - apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_antisym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult) + apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left mult_commute zrelprime_zdvd_zmult) + apply (metis abs_dvd_iff abs_of_nonneg add_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs mult_1_right mult_commute) + apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff order_antisym linorder_linear order_refl mult_commute zrelprime_zdvd_zmult) apply (metis dvd_triv_left) done @@ -208,7 +208,7 @@ a < m ==> 0 \ b ==> b < m ==> [a = b] (mod m) ==> a = b" apply (unfold zcong_def dvd_def, auto) apply (drule_tac f = "\z. z mod m" in arg_cong) - apply (metis diff_add_cancel mod_pos_pos_trivial zadd_0 zadd_commute zmod_eq_0_iff mod_add_right_eq) + apply (metis diff_add_cancel mod_pos_pos_trivial add_0 add_commute zmod_eq_0_iff mod_add_right_eq) done lemma zcong_square_zless: @@ -253,7 +253,7 @@ lemma zcong_zmod_aux: "a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)" - by(simp add: zdiff_zmult_distrib2 add_diff_eq eq_diff_eq add_ac) + by(simp add: right_diff_distrib add_diff_eq eq_diff_eq add_ac) lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)" apply (unfold zcong_def) @@ -261,7 +261,7 @@ apply (rule_tac m = m in zcong_zmod_aux) apply (rule trans) apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce) - apply (simp add: zadd_commute) + apply (simp add: add_commute) done lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)" @@ -282,7 +282,7 @@ apply (erule disjE) prefer 2 apply (simp add: zcong_zmod_eq) txt{*Remainding case: @{term "m<0"}*} - apply (rule_tac t = m in zminus_zminus [THEN subst]) + apply (rule_tac t = m in minus_minus [THEN subst]) apply (subst zcong_zminus) apply (subst zcong_zmod_eq, arith) apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b]) @@ -324,7 +324,7 @@ apply (case_tac "r' mod r = 0") prefer 2 apply (frule_tac a = "r'" in pos_mod_sign, auto) - apply (metis Pair_eq xzgcda.simps zle_refl) + apply (metis Pair_eq xzgcda.simps order_refl) done lemma xzgcd_correct: @@ -341,7 +341,7 @@ lemma xzgcda_linear_aux1: "(a - r * b) * m + (c - r * d) * (n::int) = (a * m + c * n) - r * (b * m + d * n)" - by (simp add: zdiff_zmult_distrib zadd_zmult_distrib2 zmult_assoc) + by (simp add: left_diff_distrib right_distrib mult_assoc) lemma xzgcda_linear_aux2: "r' = s' * m + t' * n ==> r = s * m + t * n @@ -391,7 +391,7 @@ prefer 2 apply simp apply (unfold zcong_def) - apply (simp (no_asm) add: zmult_commute) + apply (simp (no_asm) add: mult_commute) done lemma zcong_lineq_unique: @@ -407,7 +407,7 @@ apply (cut_tac a = a and n = n in zcong_lineq_ex, auto) apply (rule_tac x = "x * b mod n" in exI, safe) apply (simp_all (no_asm_simp)) - apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq zmult_1 zmult_assoc) + apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq mult_1 mult_assoc) done end