diff -r f224d27bb1f8 -r d59f7e2e18d3 src/HOL/Algebra/poly/UnivPoly2.thy --- a/src/HOL/Algebra/poly/UnivPoly2.thy Thu Jul 15 08:38:37 2004 +0200 +++ b/src/HOL/Algebra/poly/UnivPoly2.thy Thu Jul 15 13:11:34 2004 +0200 @@ -643,12 +643,12 @@ show "deg p + deg q <= deg (p * q)" proof (rule deg_belowI, simp) have "setsum ?s {.. deg p + deg q} - = setsum ?s ({.. deg p(} Un {deg p .. deg p + deg q})" + = setsum ?s ({..< deg p} Un {deg p .. deg p + deg q})" by (simp only: ivl_disj_un_one) also have "... = setsum ?s {deg p .. deg p + deg q}" by (simp add: setsum_Un_disjoint ivl_disj_int_one setsum_0 deg_aboveD less_add_diff) - also have "... = setsum ?s ({deg p} Un {)deg p .. deg p + deg q})" + also have "... = setsum ?s ({deg p} Un {deg p <.. deg p + deg q})" by (simp only: ivl_disj_un_singleton) also have "... = coeff p (deg p) * coeff q (deg q)" by (simp add: setsum_Un_disjoint ivl_disj_int_singleton @@ -686,14 +686,14 @@ proof (cases "k <= deg p") case True hence "coeff (setsum ?s {..deg p}) k = - coeff (setsum ?s ({..k} Un {)k..deg p})) k" + coeff (setsum ?s ({..k} Un {k<..deg p})) k" by (simp only: ivl_disj_un_one) also from True have "... = coeff (setsum ?s {..k}) k" by (simp add: setsum_Un_disjoint ivl_disj_int_one order_less_imp_not_eq2 setsum_0 coeff_natsum ) also - have "... = coeff (setsum ?s ({..k(} Un {k})) k" + have "... = coeff (setsum ?s ({..