diff -r 66823a0066db -r d5b5c9259afd src/HOL/Old_Number_Theory/Legacy_GCD.thy --- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy Tue Oct 25 16:37:11 2011 +0200 +++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy Thu Oct 27 07:46:57 2011 +0200 @@ -134,7 +134,7 @@ apply (induct m n rule: gcd_induct) apply simp apply (case_tac "k = 0") - apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2) + apply (simp_all add: gcd_non_0) done lemma gcd_mult [simp, algebra]: "gcd k (k * n) = k"