diff -r e1bd8a54c40f -r d7728f65b353 src/HOL/Transitive_Closure.thy --- a/src/HOL/Transitive_Closure.thy Mon Sep 13 08:43:48 2010 +0200 +++ b/src/HOL/Transitive_Closure.thy Mon Sep 13 11:13:15 2010 +0200 @@ -82,7 +82,7 @@ subsection {* Reflexive-transitive closure *} lemma reflcl_set_eq [pred_set_conv]: "(sup (\x y. (x, y) \ r) op =) = (\x y. (x, y) \ r \ Id)" - by (auto simp add: ext_iff) + by (auto simp add: fun_eq_iff) lemma r_into_rtrancl [intro]: "!!p. p \ r ==> p \ r^*" -- {* @{text rtrancl} of @{text r} contains @{text r} *} @@ -186,7 +186,7 @@ lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*" - apply (rule set_ext) + apply (rule set_eqI) apply (simp only: split_tupled_all) apply (blast intro: rtrancl_trans) done @@ -487,7 +487,7 @@ lemmas trancl_converseD = tranclp_converseD [to_set] lemma tranclp_converse: "(r^--1)^++ = (r^++)^--1" - by (fastsimp simp add: ext_iff + by (fastsimp simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD) lemmas trancl_converse = tranclp_converse [to_set]