diff -r 8ed38c7bd21a -r d84b1b0077ae src/HOL/HoareParallel/RG_Hoare.thy --- a/src/HOL/HoareParallel/RG_Hoare.thy Mon Sep 21 11:15:21 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1375 +0,0 @@ -header {* \section{The Proof System} *} - -theory RG_Hoare imports RG_Tran begin - -subsection {* Proof System for Component Programs *} - -declare Un_subset_iff [iff del] -declare Cons_eq_map_conv[iff] - -constdefs - stable :: "'a set \ ('a \ 'a) set \ bool" - "stable \ \f g. (\x y. x \ f \ (x, y) \ g \ y \ f)" - -inductive - rghoare :: "['a com, 'a set, ('a \ 'a) set, ('a \ 'a) set, 'a set] \ bool" - ("\ _ sat [_, _, _, _]" [60,0,0,0,0] 45) -where - Basic: "\ pre \ {s. f s \ post}; {(s,t). s \ pre \ (t=f s \ t=s)} \ guar; - stable pre rely; stable post rely \ - \ \ Basic f sat [pre, rely, guar, post]" - -| Seq: "\ \ P sat [pre, rely, guar, mid]; \ Q sat [mid, rely, guar, post] \ - \ \ Seq P Q sat [pre, rely, guar, post]" - -| Cond: "\ stable pre rely; \ P1 sat [pre \ b, rely, guar, post]; - \ P2 sat [pre \ -b, rely, guar, post]; \s. (s,s)\guar \ - \ \ Cond b P1 P2 sat [pre, rely, guar, post]" - -| While: "\ stable pre rely; (pre \ -b) \ post; stable post rely; - \ P sat [pre \ b, rely, guar, pre]; \s. (s,s)\guar \ - \ \ While b P sat [pre, rely, guar, post]" - -| Await: "\ stable pre rely; stable post rely; - \V. \ P sat [pre \ b \ {V}, {(s, t). s = t}, - UNIV, {s. (V, s) \ guar} \ post] \ - \ \ Await b P sat [pre, rely, guar, post]" - -| Conseq: "\ pre \ pre'; rely \ rely'; guar' \ guar; post' \ post; - \ P sat [pre', rely', guar', post'] \ - \ \ P sat [pre, rely, guar, post]" - -constdefs - Pre :: "'a rgformula \ 'a set" - "Pre x \ fst(snd x)" - Post :: "'a rgformula \ 'a set" - "Post x \ snd(snd(snd(snd x)))" - Rely :: "'a rgformula \ ('a \ 'a) set" - "Rely x \ fst(snd(snd x))" - Guar :: "'a rgformula \ ('a \ 'a) set" - "Guar x \ fst(snd(snd(snd x)))" - Com :: "'a rgformula \ 'a com" - "Com x \ fst x" - -subsection {* Proof System for Parallel Programs *} - -types 'a par_rgformula = "('a rgformula) list \ 'a set \ ('a \ 'a) set \ ('a \ 'a) set \ 'a set" - -inductive - par_rghoare :: "('a rgformula) list \ 'a set \ ('a \ 'a) set \ ('a \ 'a) set \ 'a set \ bool" - ("\ _ SAT [_, _, _, _]" [60,0,0,0,0] 45) -where - Parallel: - "\ \i (\j\{j. j j\i}. Guar(xs!j)) \ Rely(xs!i); - (\j\{j. j guar; - pre \ (\i\{i. ii\{i. i post; - \i Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i)] \ - \ \ xs SAT [pre, rely, guar, post]" - -section {* Soundness*} - -subsubsection {* Some previous lemmas *} - -lemma tl_of_assum_in_assum: - "(P, s) # (P, t) # xs \ assum (pre, rely) \ stable pre rely - \ (P, t) # xs \ assum (pre, rely)" -apply(simp add:assum_def) -apply clarify -apply(rule conjI) - apply(erule_tac x=0 in allE) - apply(simp (no_asm_use)only:stable_def) - apply(erule allE,erule allE,erule impE,assumption,erule mp) - apply(simp add:Env) -apply clarify -apply(erule_tac x="Suc i" in allE) -apply simp -done - -lemma etran_in_comm: - "(P, t) # xs \ comm(guar, post) \ (P, s) # (P, t) # xs \ comm(guar, post)" -apply(simp add:comm_def) -apply clarify -apply(case_tac i,simp+) -done - -lemma ctran_in_comm: - "\(s, s) \ guar; (Q, s) # xs \ comm(guar, post)\ - \ (P, s) # (Q, s) # xs \ comm(guar, post)" -apply(simp add:comm_def) -apply clarify -apply(case_tac i,simp+) -done - -lemma takecptn_is_cptn [rule_format, elim!]: - "\j. c \ cptn \ take (Suc j) c \ cptn" -apply(induct "c") - apply(force elim: cptn.cases) -apply clarify -apply(case_tac j) - apply simp - apply(rule CptnOne) -apply simp -apply(force intro:cptn.intros elim:cptn.cases) -done - -lemma dropcptn_is_cptn [rule_format,elim!]: - "\j cptn \ drop j c \ cptn" -apply(induct "c") - apply(force elim: cptn.cases) -apply clarify -apply(case_tac j,simp+) -apply(erule cptn.cases) - apply simp - apply force -apply force -done - -lemma takepar_cptn_is_par_cptn [rule_format,elim]: - "\j. c \ par_cptn \ take (Suc j) c \ par_cptn" -apply(induct "c") - apply(force elim: cptn.cases) -apply clarify -apply(case_tac j,simp) - apply(rule ParCptnOne) -apply(force intro:par_cptn.intros elim:par_cptn.cases) -done - -lemma droppar_cptn_is_par_cptn [rule_format]: - "\j par_cptn \ drop j c \ par_cptn" -apply(induct "c") - apply(force elim: par_cptn.cases) -apply clarify -apply(case_tac j,simp+) -apply(erule par_cptn.cases) - apply simp - apply force -apply force -done - -lemma tl_of_cptn_is_cptn: "\x # xs \ cptn; xs \ []\ \ xs \ cptn" -apply(subgoal_tac "1 < length (x # xs)") - apply(drule dropcptn_is_cptn,simp+) -done - -lemma not_ctran_None [rule_format]: - "\s. (None, s)#xs \ cptn \ (\i xs!i)" -apply(induct xs,simp+) -apply clarify -apply(erule cptn.cases,simp) - apply simp - apply(case_tac i,simp) - apply(rule Env) - apply simp -apply(force elim:ctran.cases) -done - -lemma cptn_not_empty [simp]:"[] \ cptn" -apply(force elim:cptn.cases) -done - -lemma etran_or_ctran [rule_format]: - "\m i. x\cptn \ m \ length x - \ (\i. Suc i < m \ \ x!i -c\ x!Suc i) \ Suc i < m - \ x!i -e\ x!Suc i" -apply(induct x,simp) -apply clarify -apply(erule cptn.cases,simp) - apply(case_tac i,simp) - apply(rule Env) - apply simp - apply(erule_tac x="m - 1" in allE) - apply(case_tac m,simp,simp) - apply(subgoal_tac "(\i. Suc i < nata \ (((P, t) # xs) ! i, xs ! i) \ ctran)") - apply force - apply clarify - apply(erule_tac x="Suc ia" in allE,simp) -apply(erule_tac x="0" and P="\j. ?H j \ (?J j) \ ctran" in allE,simp) -done - -lemma etran_or_ctran2 [rule_format]: - "\i. Suc i x\cptn \ (x!i -c\ x!Suc i \ \ x!i -e\ x!Suc i) - \ (x!i -e\ x!Suc i \ \ x!i -c\ x!Suc i)" -apply(induct x) - apply simp -apply clarify -apply(erule cptn.cases,simp) - apply(case_tac i,simp+) -apply(case_tac i,simp) - apply(force elim:etran.cases) -apply simp -done - -lemma etran_or_ctran2_disjI1: - "\ x\cptn; Suc i x!Suc i\ \ \ x!i -e\ x!Suc i" -by(drule etran_or_ctran2,simp_all) - -lemma etran_or_ctran2_disjI2: - "\ x\cptn; Suc i x!Suc i\ \ \ x!i -c\ x!Suc i" -by(drule etran_or_ctran2,simp_all) - -lemma not_ctran_None2 [rule_format]: - "\ (None, s) # xs \cptn; i \ \ ((None, s) # xs) ! i -c\ xs ! i" -apply(frule not_ctran_None,simp) -apply(case_tac i,simp) - apply(force elim:etranE) -apply simp -apply(rule etran_or_ctran2_disjI2,simp_all) -apply(force intro:tl_of_cptn_is_cptn) -done - -lemma Ex_first_occurrence [rule_format]: "P (n::nat) \ (\m. P m \ (\i P i))"; -apply(rule nat_less_induct) -apply clarify -apply(case_tac "\m. m \ P m") -apply auto -done - -lemma stability [rule_format]: - "\j k. x \ cptn \ stable p rely \ j\k \ k snd(x!j)\p \ - (\i. (Suc i) - (x!i -e\ x!(Suc i)) \ (snd(x!i), snd(x!(Suc i))) \ rely) \ - (\i. j\i \ i x!i -e\ x!Suc i) \ snd(x!k)\p \ fst(x!j)=fst(x!k)" -apply(induct x) - apply clarify - apply(force elim:cptn.cases) -apply clarify -apply(erule cptn.cases,simp) - apply simp - apply(case_tac k,simp,simp) - apply(case_tac j,simp) - apply(erule_tac x=0 in allE) - apply(erule_tac x="nat" and P="\j. (0\j) \ (?J j)" in allE,simp) - apply(subgoal_tac "t\p") - apply(subgoal_tac "(\i. i < length xs \ ((P, t) # xs) ! i -e\ xs ! i \ (snd (((P, t) # xs) ! i), snd (xs ! i)) \ rely)") - apply clarify - apply(erule_tac x="Suc i" and P="\j. (?H j) \ (?J j)\etran" in allE,simp) - apply clarify - apply(erule_tac x="Suc i" and P="\j. (?H j) \ (?J j) \ (?T j)\rely" in allE,simp) - apply(erule_tac x=0 and P="\j. (?H j) \ (?J j)\etran \ ?T j" in allE,simp) - apply(simp(no_asm_use) only:stable_def) - apply(erule_tac x=s in allE) - apply(erule_tac x=t in allE) - apply simp - apply(erule mp) - apply(erule mp) - apply(rule Env) - apply simp - apply(erule_tac x="nata" in allE) - apply(erule_tac x="nat" and P="\j. (?s\j) \ (?J j)" in allE,simp) - apply(subgoal_tac "(\i. i < length xs \ ((P, t) # xs) ! i -e\ xs ! i \ (snd (((P, t) # xs) ! i), snd (xs ! i)) \ rely)") - apply clarify - apply(erule_tac x="Suc i" and P="\j. (?H j) \ (?J j)\etran" in allE,simp) - apply clarify - apply(erule_tac x="Suc i" and P="\j. (?H j) \ (?J j) \ (?T j)\rely" in allE,simp) -apply(case_tac k,simp,simp) -apply(case_tac j) - apply(erule_tac x=0 and P="\j. (?H j) \ (?J j)\etran" in allE,simp) - apply(erule etran.cases,simp) -apply(erule_tac x="nata" in allE) -apply(erule_tac x="nat" and P="\j. (?s\j) \ (?J j)" in allE,simp) -apply(subgoal_tac "(\i. i < length xs \ ((Q, t) # xs) ! i -e\ xs ! i \ (snd (((Q, t) # xs) ! i), snd (xs ! i)) \ rely)") - apply clarify - apply(erule_tac x="Suc i" and P="\j. (?H j) \ (?J j)\etran" in allE,simp) -apply clarify -apply(erule_tac x="Suc i" and P="\j. (?H j) \ (?J j) \ (?T j)\rely" in allE,simp) -done - -subsection {* Soundness of the System for Component Programs *} - -subsubsection {* Soundness of the Basic rule *} - -lemma unique_ctran_Basic [rule_format]: - "\s i. x \ cptn \ x ! 0 = (Some (Basic f), s) \ - Suc i x!i -c\ x!Suc i \ - (\j. Suc j i\j \ x!j -e\ x!Suc j)" -apply(induct x,simp) -apply simp -apply clarify -apply(erule cptn.cases,simp) - apply(case_tac i,simp+) - apply clarify - apply(case_tac j,simp) - apply(rule Env) - apply simp -apply clarify -apply simp -apply(case_tac i) - apply(case_tac j,simp,simp) - apply(erule ctran.cases,simp_all) - apply(force elim: not_ctran_None) -apply(ind_cases "((Some (Basic f), sa), Q, t) \ ctran" for sa Q t) -apply simp -apply(drule_tac i=nat in not_ctran_None,simp) -apply(erule etranE,simp) -done - -lemma exists_ctran_Basic_None [rule_format]: - "\s i. x \ cptn \ x ! 0 = (Some (Basic f), s) - \ i fst(x!i)=None \ (\j x!Suc j)" -apply(induct x,simp) -apply simp -apply clarify -apply(erule cptn.cases,simp) - apply(case_tac i,simp,simp) - apply(erule_tac x=nat in allE,simp) - apply clarify - apply(rule_tac x="Suc j" in exI,simp,simp) -apply clarify -apply(case_tac i,simp,simp) -apply(rule_tac x=0 in exI,simp) -done - -lemma Basic_sound: - " \pre \ {s. f s \ post}; {(s, t). s \ pre \ t = f s} \ guar; - stable pre rely; stable post rely\ - \ \ Basic f sat [pre, rely, guar, post]" -apply(unfold com_validity_def) -apply clarify -apply(simp add:comm_def) -apply(rule conjI) - apply clarify - apply(simp add:cp_def assum_def) - apply clarify - apply(frule_tac j=0 and k=i and p=pre in stability) - apply simp_all - apply(erule_tac x=ia in allE,simp) - apply(erule_tac i=i and f=f in unique_ctran_Basic,simp_all) - apply(erule subsetD,simp) - apply(case_tac "x!i") - apply clarify - apply(drule_tac s="Some (Basic f)" in sym,simp) - apply(thin_tac "\j. ?H j") - apply(force elim:ctran.cases) -apply clarify -apply(simp add:cp_def) -apply clarify -apply(frule_tac i="length x - 1" and f=f in exists_ctran_Basic_None,simp+) - apply(case_tac x,simp+) - apply(rule last_fst_esp,simp add:last_length) - apply (case_tac x,simp+) -apply(simp add:assum_def) -apply clarify -apply(frule_tac j=0 and k="j" and p=pre in stability) - apply simp_all - apply(erule_tac x=i in allE,simp) - apply(erule_tac i=j and f=f in unique_ctran_Basic,simp_all) -apply(case_tac "x!j") -apply clarify -apply simp -apply(drule_tac s="Some (Basic f)" in sym,simp) -apply(case_tac "x!Suc j",simp) -apply(rule ctran.cases,simp) -apply(simp_all) -apply(drule_tac c=sa in subsetD,simp) -apply clarify -apply(frule_tac j="Suc j" and k="length x - 1" and p=post in stability,simp_all) - apply(case_tac x,simp+) - apply(erule_tac x=i in allE) -apply(erule_tac i=j and f=f in unique_ctran_Basic,simp_all) - apply arith+ -apply(case_tac x) -apply(simp add:last_length)+ -done - -subsubsection{* Soundness of the Await rule *} - -lemma unique_ctran_Await [rule_format]: - "\s i. x \ cptn \ x ! 0 = (Some (Await b c), s) \ - Suc i x!i -c\ x!Suc i \ - (\j. Suc j i\j \ x!j -e\ x!Suc j)" -apply(induct x,simp+) -apply clarify -apply(erule cptn.cases,simp) - apply(case_tac i,simp+) - apply clarify - apply(case_tac j,simp) - apply(rule Env) - apply simp -apply clarify -apply simp -apply(case_tac i) - apply(case_tac j,simp,simp) - apply(erule ctran.cases,simp_all) - apply(force elim: not_ctran_None) -apply(ind_cases "((Some (Await b c), sa), Q, t) \ ctran" for sa Q t,simp) -apply(drule_tac i=nat in not_ctran_None,simp) -apply(erule etranE,simp) -done - -lemma exists_ctran_Await_None [rule_format]: - "\s i. x \ cptn \ x ! 0 = (Some (Await b c), s) - \ i fst(x!i)=None \ (\j x!Suc j)" -apply(induct x,simp+) -apply clarify -apply(erule cptn.cases,simp) - apply(case_tac i,simp+) - apply(erule_tac x=nat in allE,simp) - apply clarify - apply(rule_tac x="Suc j" in exI,simp,simp) -apply clarify -apply(case_tac i,simp,simp) -apply(rule_tac x=0 in exI,simp) -done - -lemma Star_imp_cptn: - "(P, s) -c*\ (R, t) \ \l \ cp P s. (last l)=(R, t) - \ (\i. Suc i l!i -c\ l!Suc i)" -apply (erule converse_rtrancl_induct2) - apply(rule_tac x="[(R,t)]" in bexI) - apply simp - apply(simp add:cp_def) - apply(rule CptnOne) -apply clarify -apply(rule_tac x="(a, b)#l" in bexI) - apply (rule conjI) - apply(case_tac l,simp add:cp_def) - apply(simp add:last_length) - apply clarify -apply(case_tac i,simp) -apply(simp add:cp_def) -apply force -apply(simp add:cp_def) - apply(case_tac l) - apply(force elim:cptn.cases) -apply simp -apply(erule CptnComp) -apply clarify -done - -lemma Await_sound: - "\stable pre rely; stable post rely; - \V. \ P sat [pre \ b \ {s. s = V}, {(s, t). s = t}, - UNIV, {s. (V, s) \ guar} \ post] \ - \ P sat [pre \ b \ {s. s = V}, {(s, t). s = t}, - UNIV, {s. (V, s) \ guar} \ post] \ - \ \ Await b P sat [pre, rely, guar, post]" -apply(unfold com_validity_def) -apply clarify -apply(simp add:comm_def) -apply(rule conjI) - apply clarify - apply(simp add:cp_def assum_def) - apply clarify - apply(frule_tac j=0 and k=i and p=pre in stability,simp_all) - apply(erule_tac x=ia in allE,simp) - apply(subgoal_tac "x\ cp (Some(Await b P)) s") - apply(erule_tac i=i in unique_ctran_Await,force,simp_all) - apply(simp add:cp_def) ---{* here starts the different part. *} - apply(erule ctran.cases,simp_all) - apply(drule Star_imp_cptn) - apply clarify - apply(erule_tac x=sa in allE) - apply clarify - apply(erule_tac x=sa in allE) - apply(drule_tac c=l in subsetD) - apply (simp add:cp_def) - apply clarify - apply(erule_tac x=ia and P="\i. ?H i \ (?J i,?I i)\ctran" in allE,simp) - apply(erule etranE,simp) - apply simp -apply clarify -apply(simp add:cp_def) -apply clarify -apply(frule_tac i="length x - 1" in exists_ctran_Await_None,force) - apply (case_tac x,simp+) - apply(rule last_fst_esp,simp add:last_length) - apply(case_tac x, (simp add:cptn_not_empty)+) -apply clarify -apply(simp add:assum_def) -apply clarify -apply(frule_tac j=0 and k="j" and p=pre in stability,simp_all) - apply(erule_tac x=i in allE,simp) - apply(erule_tac i=j in unique_ctran_Await,force,simp_all) -apply(case_tac "x!j") -apply clarify -apply simp -apply(drule_tac s="Some (Await b P)" in sym,simp) -apply(case_tac "x!Suc j",simp) -apply(rule ctran.cases,simp) -apply(simp_all) -apply(drule Star_imp_cptn) -apply clarify -apply(erule_tac x=sa in allE) -apply clarify -apply(erule_tac x=sa in allE) -apply(drule_tac c=l in subsetD) - apply (simp add:cp_def) - apply clarify - apply(erule_tac x=i and P="\i. ?H i \ (?J i,?I i)\ctran" in allE,simp) - apply(erule etranE,simp) -apply simp -apply clarify -apply(frule_tac j="Suc j" and k="length x - 1" and p=post in stability,simp_all) - apply(case_tac x,simp+) - apply(erule_tac x=i in allE) -apply(erule_tac i=j in unique_ctran_Await,force,simp_all) - apply arith+ -apply(case_tac x) -apply(simp add:last_length)+ -done - -subsubsection{* Soundness of the Conditional rule *} - -lemma Cond_sound: - "\ stable pre rely; \ P1 sat [pre \ b, rely, guar, post]; - \ P2 sat [pre \ - b, rely, guar, post]; \s. (s,s)\guar\ - \ \ (Cond b P1 P2) sat [pre, rely, guar, post]" -apply(unfold com_validity_def) -apply clarify -apply(simp add:cp_def comm_def) -apply(case_tac "\i. Suc i x!i -c\ x!Suc i") - prefer 2 - apply simp - apply clarify - apply(frule_tac j="0" and k="length x - 1" and p=pre in stability,simp+) - apply(case_tac x,simp+) - apply(simp add:assum_def) - apply(simp add:assum_def) - apply(erule_tac m="length x" in etran_or_ctran,simp+) - apply(case_tac x, (simp add:last_length)+) -apply(erule exE) -apply(drule_tac n=i and P="\i. ?H i \ (?J i,?I i)\ ctran" in Ex_first_occurrence) -apply clarify -apply (simp add:assum_def) -apply(frule_tac j=0 and k="m" and p=pre in stability,simp+) - apply(erule_tac m="Suc m" in etran_or_ctran,simp+) -apply(erule ctran.cases,simp_all) - apply(erule_tac x="sa" in allE) - apply(drule_tac c="drop (Suc m) x" in subsetD) - apply simp - apply clarify - apply simp - apply clarify - apply(case_tac "i\m") - apply(drule le_imp_less_or_eq) - apply(erule disjE) - apply(erule_tac x=i in allE, erule impE, assumption) - apply simp+ - apply(erule_tac x="i - (Suc m)" and P="\j. ?H j \ ?J j \ (?I j)\guar" in allE) - apply(subgoal_tac "(Suc m)+(i - Suc m) \ length x") - apply(subgoal_tac "(Suc m)+Suc (i - Suc m) \ length x") - apply(rotate_tac -2) - apply simp - apply arith - apply arith -apply(case_tac "length (drop (Suc m) x)",simp) -apply(erule_tac x="sa" in allE) -back -apply(drule_tac c="drop (Suc m) x" in subsetD,simp) - apply clarify -apply simp -apply clarify -apply(case_tac "i\m") - apply(drule le_imp_less_or_eq) - apply(erule disjE) - apply(erule_tac x=i in allE, erule impE, assumption) - apply simp - apply simp -apply(erule_tac x="i - (Suc m)" and P="\j. ?H j \ ?J j \ (?I j)\guar" in allE) -apply(subgoal_tac "(Suc m)+(i - Suc m) \ length x") - apply(subgoal_tac "(Suc m)+Suc (i - Suc m) \ length x") - apply(rotate_tac -2) - apply simp - apply arith -apply arith -done - -subsubsection{* Soundness of the Sequential rule *} - -inductive_cases Seq_cases [elim!]: "(Some (Seq P Q), s) -c\ t" - -lemma last_lift_not_None: "fst ((lift Q) ((x#xs)!(length xs))) \ None" -apply(subgoal_tac "length xs cptn_mod \ \s P. x !0=(Some (Seq P Q), s) \ - (\iSome Q) \ - (\xs\ cp (Some P) s. x=map (lift Q) xs)" -apply(erule cptn_mod.induct) -apply(unfold cp_def) -apply safe -apply simp_all - apply(simp add:lift_def) - apply(rule_tac x="[(Some Pa, sa)]" in exI,simp add:CptnOne) - apply(subgoal_tac "(\i < Suc (length xs). fst (((Some (Seq Pa Q), t) # xs) ! i) \ Some Q)") - apply clarify - apply(rule_tac x="(Some Pa, sa) #(Some Pa, t) # zs" in exI,simp) - apply(rule conjI,erule CptnEnv) - apply(simp (no_asm_use) add:lift_def) - apply clarify - apply(erule_tac x="Suc i" in allE, simp) - apply(ind_cases "((Some (Seq Pa Q), sa), None, t) \ ctran" for Pa sa t) - apply(rule_tac x="(Some P, sa) # xs" in exI, simp add:cptn_iff_cptn_mod lift_def) -apply(erule_tac x="length xs" in allE, simp) -apply(simp only:Cons_lift_append) -apply(subgoal_tac "length xs < length ((Some P, sa) # xs)") - apply(simp only :nth_append length_map last_length nth_map) - apply(case_tac "last((Some P, sa) # xs)") - apply(simp add:lift_def) -apply simp -done -declare map_eq_Cons_conv [simp del] Cons_eq_map_conv [simp del] - -lemma Seq_sound2 [rule_format]: - "x \ cptn \ \s P i. x!0=(Some (Seq P Q), s) \ i fst(x!i)=Some Q \ - (\j(Some Q)) \ - (\xs ys. xs \ cp (Some P) s \ length xs=Suc i - \ ys \ cp (Some Q) (snd(xs !i)) \ x=(map (lift Q) xs)@tl ys)" -apply(erule cptn.induct) -apply(unfold cp_def) -apply safe -apply simp_all - apply(case_tac i,simp+) - apply(erule allE,erule impE,assumption,simp) - apply clarify - apply(subgoal_tac "(\j < nat. fst (((Some (Seq Pa Q), t) # xs) ! j) \ Some Q)",clarify) - prefer 2 - apply force - apply(case_tac xsa,simp,simp) - apply(rule_tac x="(Some Pa, sa) #(Some Pa, t) # list" in exI,simp) - apply(rule conjI,erule CptnEnv) - apply(simp (no_asm_use) add:lift_def) - apply(rule_tac x=ys in exI,simp) -apply(ind_cases "((Some (Seq Pa Q), sa), t) \ ctran" for Pa sa t) - apply simp - apply(rule_tac x="(Some Pa, sa)#[(None, ta)]" in exI,simp) - apply(rule conjI) - apply(drule_tac xs="[]" in CptnComp,force simp add:CptnOne,simp) - apply(case_tac i, simp+) - apply(case_tac nat,simp+) - apply(rule_tac x="(Some Q,ta)#xs" in exI,simp add:lift_def) - apply(case_tac nat,simp+) - apply(force) -apply(case_tac i, simp+) -apply(case_tac nat,simp+) -apply(erule_tac x="Suc nata" in allE,simp) -apply clarify -apply(subgoal_tac "(\j Some Q)",clarify) - prefer 2 - apply clarify - apply force -apply(rule_tac x="(Some Pa, sa)#(Some P2, ta)#(tl xsa)" in exI,simp) -apply(rule conjI,erule CptnComp) -apply(rule nth_tl_if,force,simp+) -apply(rule_tac x=ys in exI,simp) -apply(rule conjI) -apply(rule nth_tl_if,force,simp+) - apply(rule tl_zero,simp+) - apply force -apply(rule conjI,simp add:lift_def) -apply(subgoal_tac "lift Q (Some P2, ta) =(Some (Seq P2 Q), ta)") - apply(simp add:Cons_lift del:map.simps) - apply(rule nth_tl_if) - apply force - apply simp+ -apply(simp add:lift_def) -done -(* -lemma last_lift_not_None3: "fst (last (map (lift Q) (x#xs))) \ None" -apply(simp only:last_length [THEN sym]) -apply(subgoal_tac "length xs None" -apply(simp only:last_length [THEN sym]) -apply(subgoal_tac "length xs\ P sat [pre, rely, guar, mid]; \ Q sat [mid, rely, guar, post]\ - \ \ Seq P Q sat [pre, rely, guar, post]" -apply(unfold com_validity_def) -apply clarify -apply(case_tac "\i[]") - apply(drule last_conv_nth) - apply (simp del:map.simps) - apply(simp only:last_lift_not_None) - apply simp ---{* @{text "\i[]") - apply(drule last_conv_nth,simp) - apply(rule conjI) - apply(erule mp) - apply(case_tac "xs!m") - apply(case_tac "fst(xs!m)",simp) - apply(simp add:lift_def nth_append) - apply clarify - apply(erule_tac x="m+i" in allE) - back - back - apply(case_tac ys,(simp add:nth_append)+) - apply (case_tac i, (simp add:snd_lift)+) - apply(erule mp) - apply(case_tac "xs!m") - apply(force elim:etran.cases intro:Env simp add:lift_def) - apply simp -apply simp -apply clarify -apply(rule conjI,clarify) - apply(case_tac "i[]") - apply(drule last_conv_nth) - apply(simp add: snd_lift nth_append) - apply(rule conjI,clarify) - apply(case_tac ys,simp+) - apply clarify - apply(case_tac ys,simp+) -done - -subsubsection{* Soundness of the While rule *} - -lemma last_append[rule_format]: - "\xs. ys\[] \ ((xs@ys)!(length (xs@ys) - (Suc 0)))=(ys!(length ys - (Suc 0)))" -apply(induct ys) - apply simp -apply clarify -apply (simp add:nth_append length_append) -done - -lemma assum_after_body: - "\ \ P sat [pre \ b, rely, guar, pre]; - (Some P, s) # xs \ cptn_mod; fst (last ((Some P, s) # xs)) = None; s \ b; - (Some (While b P), s) # (Some (Seq P (While b P)), s) # - map (lift (While b P)) xs @ ys \ assum (pre, rely)\ - \ (Some (While b P), snd (last ((Some P, s) # xs))) # ys \ assum (pre, rely)" -apply(simp add:assum_def com_validity_def cp_def cptn_iff_cptn_mod) -apply clarify -apply(erule_tac x=s in allE) -apply(drule_tac c="(Some P, s) # xs" in subsetD,simp) - apply clarify - apply(erule_tac x="Suc i" in allE) - apply simp - apply(simp add:Cons_lift_append nth_append snd_lift del:map.simps) - apply(erule mp) - apply(erule etranE,simp) - apply(case_tac "fst(((Some P, s) # xs) ! i)") - apply(force intro:Env simp add:lift_def) - apply(force intro:Env simp add:lift_def) -apply(rule conjI) - apply clarify - apply(simp add:comm_def last_length) -apply clarify -apply(rule conjI) - apply(simp add:comm_def) -apply clarify -apply(erule_tac x="Suc(length xs + i)" in allE,simp) -apply(case_tac i, simp add:nth_append Cons_lift_append snd_lift del:map.simps) - apply(simp add:last_length) - apply(erule mp) - apply(case_tac "last xs") - apply(simp add:lift_def) -apply(simp add:Cons_lift_append nth_append snd_lift del:map.simps) -done - -lemma While_sound_aux [rule_format]: - "\ pre \ - b \ post; \ P sat [pre \ b, rely, guar, pre]; \s. (s, s) \ guar; - stable pre rely; stable post rely; x \ cptn_mod \ - \ \s xs. x=(Some(While b P),s)#xs \ x\assum(pre, rely) \ x \ comm (guar, post)" -apply(erule cptn_mod.induct) -apply safe -apply (simp_all del:last.simps) ---{* 5 subgoals left *} -apply(simp add:comm_def) ---{* 4 subgoals left *} -apply(rule etran_in_comm) -apply(erule mp) -apply(erule tl_of_assum_in_assum,simp) ---{* While-None *} -apply(ind_cases "((Some (While b P), s), None, t) \ ctran" for s t) -apply(simp add:comm_def) -apply(simp add:cptn_iff_cptn_mod [THEN sym]) -apply(rule conjI,clarify) - apply(force simp add:assum_def) -apply clarify -apply(rule conjI, clarify) - apply(case_tac i,simp,simp) - apply(force simp add:not_ctran_None2) -apply(subgoal_tac "\i. Suc i < length ((None, t) # xs) \ (((None, t) # xs) ! i, ((None, t) # xs) ! Suc i)\ etran") - prefer 2 - apply clarify - apply(rule_tac m="length ((None, s) # xs)" in etran_or_ctran,simp+) - apply(erule not_ctran_None2,simp) - apply simp+ -apply(frule_tac j="0" and k="length ((None, s) # xs) - 1" and p=post in stability,simp+) - apply(force simp add:assum_def subsetD) - apply(simp add:assum_def) - apply clarify - apply(erule_tac x="i" in allE,simp) - apply(erule_tac x="Suc i" in allE,simp) - apply simp -apply clarify -apply (simp add:last_length) ---{* WhileOne *} -apply(thin_tac "P = While b P \ ?Q") -apply(rule ctran_in_comm,simp) -apply(simp add:Cons_lift del:map.simps) -apply(simp add:comm_def del:map.simps) -apply(rule conjI) - apply clarify - apply(case_tac "fst(((Some P, sa) # xs) ! i)") - apply(case_tac "((Some P, sa) # xs) ! i") - apply (simp add:lift_def) - apply(ind_cases "(Some (While b P), ba) -c\ t" for ba t) - apply simp - apply simp - apply(simp add:snd_lift del:map.simps) - apply(simp only:com_validity_def cp_def cptn_iff_cptn_mod) - apply(erule_tac x=sa in allE) - apply(drule_tac c="(Some P, sa) # xs" in subsetD) - apply (simp add:assum_def del:map.simps) - apply clarify - apply(erule_tac x="Suc ia" in allE,simp add:snd_lift del:map.simps) - apply(erule mp) - apply(case_tac "fst(((Some P, sa) # xs) ! ia)") - apply(erule etranE,simp add:lift_def) - apply(rule Env) - apply(erule etranE,simp add:lift_def) - apply(rule Env) - apply (simp add:comm_def del:map.simps) - apply clarify - apply(erule allE,erule impE,assumption) - apply(erule mp) - apply(case_tac "((Some P, sa) # xs) ! i") - apply(case_tac "xs!i") - apply(simp add:lift_def) - apply(case_tac "fst(xs!i)") - apply force - apply force ---{* last=None *} -apply clarify -apply(subgoal_tac "(map (lift (While b P)) ((Some P, sa) # xs))\[]") - apply(drule last_conv_nth) - apply (simp del:map.simps) - apply(simp only:last_lift_not_None) -apply simp ---{* WhileMore *} -apply(thin_tac "P = While b P \ ?Q") -apply(rule ctran_in_comm,simp del:last.simps) ---{* metiendo la hipotesis antes de dividir la conclusion. *} -apply(subgoal_tac "(Some (While b P), snd (last ((Some P, sa) # xs))) # ys \ assum (pre, rely)") - apply (simp del:last.simps) - prefer 2 - apply(erule assum_after_body) - apply (simp del:last.simps)+ ---{* lo de antes. *} -apply(simp add:comm_def del:map.simps last.simps) -apply(rule conjI) - apply clarify - apply(simp only:Cons_lift_append) - apply(case_tac "i t" for ba t) - apply simp - apply simp - apply(simp add:snd_lift del:map.simps last.simps) - apply(thin_tac " \i. i < length ys \ ?P i") - apply(simp only:com_validity_def cp_def cptn_iff_cptn_mod) - apply(erule_tac x=sa in allE) - apply(drule_tac c="(Some P, sa) # xs" in subsetD) - apply (simp add:assum_def del:map.simps last.simps) - apply clarify - apply(erule_tac x="Suc ia" in allE,simp add:nth_append snd_lift del:map.simps last.simps, erule mp) - apply(case_tac "fst(((Some P, sa) # xs) ! ia)") - apply(erule etranE,simp add:lift_def) - apply(rule Env) - apply(erule etranE,simp add:lift_def) - apply(rule Env) - apply (simp add:comm_def del:map.simps) - apply clarify - apply(erule allE,erule impE,assumption) - apply(erule mp) - apply(case_tac "((Some P, sa) # xs) ! i") - apply(case_tac "xs!i") - apply(simp add:lift_def) - apply(case_tac "fst(xs!i)") - apply force - apply force ---{* @{text "i \ length xs"} *} -apply(subgoal_tac "i-length xs length xs"} *} -apply(case_tac "i-length xs") - apply arith -apply(simp add:nth_append del:map.simps last.simps) -apply(rotate_tac -3) -apply(subgoal_tac "i- Suc (length xs)=nat") - prefer 2 - apply arith -apply simp ---{* last=None *} -apply clarify -apply(case_tac ys) - apply(simp add:Cons_lift del:map.simps last.simps) - apply(subgoal_tac "(map (lift (While b P)) ((Some P, sa) # xs))\[]") - apply(drule last_conv_nth) - apply (simp del:map.simps) - apply(simp only:last_lift_not_None) - apply simp -apply(subgoal_tac "((Some (Seq P (While b P)), sa) # map (lift (While b P)) xs @ ys)\[]") - apply(drule last_conv_nth) - apply (simp del:map.simps last.simps) - apply(simp add:nth_append del:last.simps) - apply(subgoal_tac "((Some (While b P), snd (last ((Some P, sa) # xs))) # a # list)\[]") - apply(drule last_conv_nth) - apply (simp del:map.simps last.simps) - apply simp -apply simp -done - -lemma While_sound: - "\stable pre rely; pre \ - b \ post; stable post rely; - \ P sat [pre \ b, rely, guar, pre]; \s. (s,s)\guar\ - \ \ While b P sat [pre, rely, guar, post]" -apply(unfold com_validity_def) -apply clarify -apply(erule_tac xs="tl x" in While_sound_aux) - apply(simp add:com_validity_def) - apply force - apply simp_all -apply(simp add:cptn_iff_cptn_mod cp_def) -apply(simp add:cp_def) -apply clarify -apply(rule nth_equalityI) - apply simp_all - apply(case_tac x,simp+) -apply clarify -apply(case_tac i,simp+) -apply(case_tac x,simp+) -done - -subsubsection{* Soundness of the Rule of Consequence *} - -lemma Conseq_sound: - "\pre \ pre'; rely \ rely'; guar' \ guar; post' \ post; - \ P sat [pre', rely', guar', post']\ - \ \ P sat [pre, rely, guar, post]" -apply(simp add:com_validity_def assum_def comm_def) -apply clarify -apply(erule_tac x=s in allE) -apply(drule_tac c=x in subsetD) - apply force -apply force -done - -subsubsection {* Soundness of the system for sequential component programs *} - -theorem rgsound: - "\ P sat [pre, rely, guar, post] \ \ P sat [pre, rely, guar, post]" -apply(erule rghoare.induct) - apply(force elim:Basic_sound) - apply(force elim:Seq_sound) - apply(force elim:Cond_sound) - apply(force elim:While_sound) - apply(force elim:Await_sound) -apply(erule Conseq_sound,simp+) -done - -subsection {* Soundness of the System for Parallel Programs *} - -constdefs - ParallelCom :: "('a rgformula) list \ 'a par_com" - "ParallelCom Ps \ map (Some \ fst) Ps" - -lemma two: - "\ \i (\j\{j. j < length xs \ j \ i}. Guar (xs ! j)) - \ Rely (xs ! i); - pre \ (\i\{i. i < length xs}. Pre (xs ! i)); - \i Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; - length xs=length clist; x \ par_cp (ParallelCom xs) s; x\par_assum(pre, rely); - \icp (Some(Com(xs!i))) s; x \ clist \ - \ \j i. i Suc j (clist!i!j) -c\ (clist!i!Suc j) - \ (snd(clist!i!j), snd(clist!i!Suc j)) \ Guar(xs!i)" -apply(unfold par_cp_def) -apply (rule ccontr) ---{* By contradiction: *} -apply (simp del: Un_subset_iff) -apply(erule exE) ---{* the first c-tran that does not satisfy the guarantee-condition is from @{text "\_i"} at step @{text "m"}. *} -apply(drule_tac n=j and P="\j. \i. ?H i j" in Ex_first_occurrence) -apply(erule exE) -apply clarify ---{* @{text "\_i \ A(pre, rely_1)"} *} -apply(subgoal_tac "take (Suc (Suc m)) (clist!i) \ assum(Pre(xs!i), Rely(xs!i))") ---{* but this contradicts @{text "\ \_i sat [pre_i,rely_i,guar_i,post_i]"} *} - apply(erule_tac x=i and P="\i. ?H i \ \ (?J i) sat [?I i,?K i,?M i,?N i]" in allE,erule impE,assumption) - apply(simp add:com_validity_def) - apply(erule_tac x=s in allE) - apply(simp add:cp_def comm_def) - apply(drule_tac c="take (Suc (Suc m)) (clist ! i)" in subsetD) - apply simp - apply (blast intro: takecptn_is_cptn) - apply simp - apply clarify - apply(erule_tac x=m and P="\j. ?I j \ ?J j \ ?H j" in allE) - apply (simp add:conjoin_def same_length_def) -apply(simp add:assum_def del: Un_subset_iff) -apply(rule conjI) - apply(erule_tac x=i and P="\j. ?H j \ ?I j \cp (?K j) (?J j)" in allE) - apply(simp add:cp_def par_assum_def) - apply(drule_tac c="s" in subsetD,simp) - apply simp -apply clarify -apply(erule_tac x=i and P="\j. ?H j \ ?M \ UNION (?S j) (?T j) \ (?L j)" in allE) -apply(simp del: Un_subset_iff) -apply(erule subsetD) -apply simp -apply(simp add:conjoin_def compat_label_def) -apply clarify -apply(erule_tac x=ia and P="\j. ?H j \ (?P j) \ ?Q j" in allE,simp) ---{* each etran in @{text "\_1[0\m]"} corresponds to *} -apply(erule disjE) ---{* a c-tran in some @{text "\_{ib}"} *} - apply clarify - apply(case_tac "i=ib",simp) - apply(erule etranE,simp) - apply(erule_tac x="ib" and P="\i. ?H i \ (?I i) \ (?J i)" in allE) - apply (erule etranE) - apply(case_tac "ia=m",simp) - apply simp - apply(erule_tac x=ia and P="\j. ?H j \ (\ i. ?P i j)" in allE) - apply(subgoal_tac "ia"}, -therefore it satisfies @{text "rely \ guar_{ib}"} *} -apply (force simp add:par_assum_def same_state_def) -done - - -lemma three [rule_format]: - "\ xs\[]; \i (\j\{j. j < length xs \ j \ i}. Guar (xs ! j)) - \ Rely (xs ! i); - pre \ (\i\{i. i < length xs}. Pre (xs ! i)); - \i Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; - length xs=length clist; x \ par_cp (ParallelCom xs) s; x \ par_assum(pre, rely); - \icp (Some(Com(xs!i))) s; x \ clist \ - \ \j i. i Suc j (clist!i!j) -e\ (clist!i!Suc j) - \ (snd(clist!i!j), snd(clist!i!Suc j)) \ rely \ (\j\{j. j < length xs \ j \ i}. Guar (xs ! j))" -apply(drule two) - apply simp_all -apply clarify -apply(simp add:conjoin_def compat_label_def) -apply clarify -apply(erule_tac x=j and P="\j. ?H j \ (?J j \ (\i. ?P i j)) \ ?I j" in allE,simp) -apply(erule disjE) - prefer 2 - apply(force simp add:same_state_def par_assum_def) -apply clarify -apply(case_tac "i=ia",simp) - apply(erule etranE,simp) -apply(erule_tac x="ia" and P="\i. ?H i \ (?I i) \ (?J i)" in allE,simp) -apply(erule_tac x=j and P="\j. \i. ?S j i \ (?I j i, ?H j i)\ ctran \ (?P i j)" in allE) -apply(erule_tac x=ia and P="\j. ?S j \ (?I j, ?H j)\ ctran \ (?P j)" in allE) -apply(simp add:same_state_def) -apply(erule_tac x=i and P="\j. (?T j) \ (\i. (?H j i) \ (snd (?d j i))=(snd (?e j i)))" in all_dupE) -apply(erule_tac x=ia and P="\j. (?T j) \ (\i. (?H j i) \ (snd (?d j i))=(snd (?e j i)))" in allE,simp) -done - -lemma four: - "\xs\[]; \i < length xs. rely \ (\j\{j. j < length xs \ j \ i}. Guar (xs ! j)) - \ Rely (xs ! i); - (\j\{j. j < length xs}. Guar (xs ! j)) \ guar; - pre \ (\i\{i. i < length xs}. Pre (xs ! i)); - \i < length xs. - \ Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; - x \ par_cp (ParallelCom xs) s; x \ par_assum (pre, rely); Suc i < length x; - x ! i -pc\ x ! Suc i\ - \ (snd (x ! i), snd (x ! Suc i)) \ guar" -apply(simp add: ParallelCom_def del: Un_subset_iff) -apply(subgoal_tac "(map (Some \ fst) xs)\[]") - prefer 2 - apply simp -apply(frule rev_subsetD) - apply(erule one [THEN equalityD1]) -apply(erule subsetD) -apply (simp del: Un_subset_iff) -apply clarify -apply(drule_tac pre=pre and rely=rely and x=x and s=s and xs=xs and clist=clist in two) -apply(assumption+) - apply(erule sym) - apply(simp add:ParallelCom_def) - apply assumption - apply(simp add:Com_def) - apply assumption -apply(simp add:conjoin_def same_program_def) -apply clarify -apply(erule_tac x=i and P="\j. ?H j \ fst(?I j)=(?J j)" in all_dupE) -apply(erule_tac x="Suc i" and P="\j. ?H j \ fst(?I j)=(?J j)" in allE) -apply(erule par_ctranE,simp) -apply(erule_tac x=i and P="\j. \i. ?S j i \ (?I j i, ?H j i)\ ctran \ (?P i j)" in allE) -apply(erule_tac x=ia and P="\j. ?S j \ (?I j, ?H j)\ ctran \ (?P j)" in allE) -apply(rule_tac x=ia in exI) -apply(simp add:same_state_def) -apply(erule_tac x=ia and P="\j. (?T j) \ (\i. (?H j i) \ (snd (?d j i))=(snd (?e j i)))" in all_dupE,simp) -apply(erule_tac x=ia and P="\j. (?T j) \ (\i. (?H j i) \ (snd (?d j i))=(snd (?e j i)))" in allE,simp) -apply(erule_tac x=i and P="\j. ?H j \ (snd (?d j))=(snd (?e j))" in all_dupE) -apply(erule_tac x=i and P="\j. ?H j \ (snd (?d j))=(snd (?e j))" in all_dupE,simp) -apply(erule_tac x="Suc i" and P="\j. ?H j \ (snd (?d j))=(snd (?e j))" in allE,simp) -apply(erule mp) -apply(subgoal_tac "r=fst(clist ! ia ! Suc i)",simp) -apply(drule_tac i=ia in list_eq_if) -back -apply simp_all -done - -lemma parcptn_not_empty [simp]:"[] \ par_cptn" -apply(force elim:par_cptn.cases) -done - -lemma five: - "\xs\[]; \i (\j\{j. j < length xs \ j \ i}. Guar (xs ! j)) - \ Rely (xs ! i); - pre \ (\i\{i. i < length xs}. Pre (xs ! i)); - (\i\{i. i < length xs}. Post (xs ! i)) \ post; - \i < length xs. - \ Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; - x \ par_cp (ParallelCom xs) s; x \ par_assum (pre, rely); - All_None (fst (last x)) \ \ snd (last x) \ post" -apply(simp add: ParallelCom_def del: Un_subset_iff) -apply(subgoal_tac "(map (Some \ fst) xs)\[]") - prefer 2 - apply simp -apply(frule rev_subsetD) - apply(erule one [THEN equalityD1]) -apply(erule subsetD) -apply(simp del: Un_subset_iff) -apply clarify -apply(subgoal_tac "\iassum(Pre(xs!i), Rely(xs!i))") - apply(erule_tac x=i and P="\i. ?H i \ \ (?J i) sat [?I i,?K i,?M i,?N i]" in allE,erule impE,assumption) - apply(simp add:com_validity_def) - apply(erule_tac x=s in allE) - apply(erule_tac x=i and P="\j. ?H j \ (?I j) \ cp (?J j) s" in allE,simp) - apply(drule_tac c="clist!i" in subsetD) - apply (force simp add:Com_def) - apply(simp add:comm_def conjoin_def same_program_def del:last.simps) - apply clarify - apply(erule_tac x="length x - 1" and P="\j. ?H j \ fst(?I j)=(?J j)" in allE) - apply (simp add:All_None_def same_length_def) - apply(erule_tac x=i and P="\j. ?H j \ length(?J j)=(?K j)" in allE) - apply(subgoal_tac "length x - 1 < length x",simp) - apply(case_tac "x\[]") - apply(simp add: last_conv_nth) - apply(erule_tac x="clist!i" in ballE) - apply(simp add:same_state_def) - apply(subgoal_tac "clist!i\[]") - apply(simp add: last_conv_nth) - apply(case_tac x) - apply (force simp add:par_cp_def) - apply (force simp add:par_cp_def) - apply force - apply (force simp add:par_cp_def) - apply(case_tac x) - apply (force simp add:par_cp_def) - apply (force simp add:par_cp_def) -apply clarify -apply(simp add:assum_def) -apply(rule conjI) - apply(simp add:conjoin_def same_state_def par_cp_def) - apply clarify - apply(erule_tac x=ia and P="\j. (?T j) \ (\i. (?H j i) \ (snd (?d j i))=(snd (?e j i)))" in allE,simp) - apply(erule_tac x=0 and P="\j. ?H j \ (snd (?d j))=(snd (?e j))" in allE) - apply(case_tac x,simp+) - apply (simp add:par_assum_def) - apply clarify - apply(drule_tac c="snd (clist ! ia ! 0)" in subsetD) - apply assumption - apply simp -apply clarify -apply(erule_tac x=ia in all_dupE) -apply(rule subsetD, erule mp, assumption) -apply(erule_tac pre=pre and rely=rely and x=x and s=s in three) - apply(erule_tac x=ic in allE,erule mp) - apply simp_all - apply(simp add:ParallelCom_def) - apply(force simp add:Com_def) -apply(simp add:conjoin_def same_length_def) -done - -lemma ParallelEmpty [rule_format]: - "\i s. x \ par_cp (ParallelCom []) s \ - Suc i < length x \ (x ! i, x ! Suc i) \ par_ctran" -apply(induct_tac x) - apply(simp add:par_cp_def ParallelCom_def) -apply clarify -apply(case_tac list,simp,simp) -apply(case_tac i) - apply(simp add:par_cp_def ParallelCom_def) - apply(erule par_ctranE,simp) -apply(simp add:par_cp_def ParallelCom_def) -apply clarify -apply(erule par_cptn.cases,simp) - apply simp -apply(erule par_ctranE) -back -apply simp -done - -theorem par_rgsound: - "\ c SAT [pre, rely, guar, post] \ - \ (ParallelCom c) SAT [pre, rely, guar, post]" -apply(erule par_rghoare.induct) -apply(case_tac xs,simp) - apply(simp add:par_com_validity_def par_comm_def) - apply clarify - apply(case_tac "post=UNIV",simp) - apply clarify - apply(drule ParallelEmpty) - apply assumption - apply simp - apply clarify - apply simp -apply(subgoal_tac "xs\[]") - prefer 2 - apply simp -apply(thin_tac "xs = a # list") -apply(simp add:par_com_validity_def par_comm_def) -apply clarify -apply(rule conjI) - apply clarify - apply(erule_tac pre=pre and rely=rely and guar=guar and x=x and s=s and xs=xs in four) - apply(assumption+) - apply clarify - apply (erule allE, erule impE, assumption,erule rgsound) - apply(assumption+) -apply clarify -apply(erule_tac pre=pre and rely=rely and post=post and x=x and s=s and xs=xs in five) - apply(assumption+) - apply clarify - apply (erule allE, erule impE, assumption,erule rgsound) - apply(assumption+) -done - -end