diff -r bf1bdf335ea0 -r d8d2a2b97168 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Wed Mar 26 09:19:04 2014 +0100 +++ b/src/HOL/Deriv.thy Wed Mar 26 14:00:37 2014 +0000 @@ -1364,6 +1364,33 @@ by simp qed +lemma DERIV_pos_imp_increasing_at_bot: + fixes f :: "real => real" + assumes "\x. x \ b \ (EX y. DERIV f x :> y & y > 0)" + and lim: "(f ---> flim) at_bot" + shows "flim < f b" +proof - + have "flim \ f (b - 1)" + apply (rule tendsto_ge_const [OF _ lim]) + apply (auto simp: trivial_limit_at_bot_linorder eventually_at_bot_linorder) + apply (rule_tac x="b - 2" in exI) + apply (force intro: order.strict_implies_order DERIV_pos_imp_increasing [where f=f] assms) + done + also have "... < f b" + by (force intro: DERIV_pos_imp_increasing [where f=f] assms) + finally show ?thesis . +qed + +lemma DERIV_neg_imp_decreasing_at_top: + fixes f :: "real => real" + assumes der: "\x. x \ b \ (EX y. DERIV f x :> y & y < 0)" + and lim: "(f ---> flim) at_top" + shows "flim < f b" + apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\i. f (-i)" and b = "-b", simplified]) + apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less) + apply (metis filterlim_at_top_mirror lim) + done + text {* Derivative of inverse function *} lemma DERIV_inverse_function: