diff -r 4dc65845eab3 -r d8d7d1b785af src/HOL/Number_Theory/UniqueFactorization.thy --- a/src/HOL/Number_Theory/UniqueFactorization.thy Wed Feb 24 11:55:52 2010 +0100 +++ b/src/HOL/Number_Theory/UniqueFactorization.thy Mon Mar 01 13:40:23 2010 +0100 @@ -67,8 +67,7 @@ "ALL i :# M. P i"? *) -constdefs - msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b" +definition msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b" where "msetprod f M == setprod (%x. (f x)^(count M x)) (set_of M)" syntax @@ -214,8 +213,7 @@ thus ?thesis by (simp add:multiset_eq_conv_count_eq) qed -constdefs - multiset_prime_factorization :: "nat => nat multiset" +definition multiset_prime_factorization :: "nat => nat multiset" where "multiset_prime_factorization n == if n > 0 then (THE M. ((ALL p : set_of M. prime p) & n = (PROD i :# M. i)))