diff -r 6c52b1d71f8b -r d8fb621fea02 src/HOL/Power.thy --- a/src/HOL/Power.thy Mon Feb 10 23:04:45 2020 +0100 +++ b/src/HOL/Power.thy Tue Feb 11 12:55:35 2020 +0000 @@ -904,13 +904,14 @@ from power_strict_increasing_iff [OF this] less show ?thesis .. qed -lemma power_dvd_imp_le: "i ^ m dvd i ^ n \ 1 < i \ m \ n" - for i m n :: nat - apply (rule power_le_imp_le_exp) - apply assumption - apply (erule dvd_imp_le) - apply simp - done +lemma power_gt_expt: "n > Suc 0 \ n^k > k" + by (induction k) (auto simp: less_trans_Suc n_less_m_mult_n) + +lemma power_dvd_imp_le: + fixes i :: nat + assumes "i ^ m dvd i ^ n" "1 < i" + shows "m \ n" + using assms by (auto intro: power_le_imp_le_exp [OF \1 < i\ dvd_imp_le]) lemma dvd_power_iff_le: fixes k::nat @@ -968,7 +969,7 @@ qed lemma ex_power_ivl2: fixes b k :: nat assumes "b \ 2" "k \ 2" -shows "\n. b^n < k \ k \ b^(n+1)" + shows "\n. b^n < k \ k \ b^(n+1)" proof - have "1 \ k - 1" using assms(2) by arith from ex_power_ivl1[OF assms(1) this]