diff -r 46f59511b7bb -r d97fdabd9e2b src/Doc/Locales/Examples.thy --- a/src/Doc/Locales/Examples.thy Fri Sep 20 19:07:10 2024 +0200 +++ b/src/Doc/Locales/Examples.thy Fri Sep 20 19:51:08 2024 +0200 @@ -50,7 +50,7 @@ \ locale partial_order = - fixes le :: "'a \ 'a \ bool" (infixl "\" 50) + fixes le :: "'a \ 'a \ bool" (infixl \\\ 50) assumes refl [intro, simp]: "x \ x" and anti_sym [intro]: "\ x \ y; y \ x \ \ x = y" and trans [trans]: "\ x \ y; y \ z \ \ x \ z" @@ -141,7 +141,7 @@ \ definition (in partial_order) - less :: "'a \ 'a \ bool" (infixl "\" 50) + less :: "'a \ 'a \ bool" (infixl \\\ 50) where "(x \ y) = (x \ y \ x \ y)" text (in partial_order) \The strict order \less\ with infix @@ -321,9 +321,9 @@ together with an example theorem.\ definition - meet (infixl "\" 70) where "x \ y = (THE inf. is_inf x y inf)" + meet (infixl \\\ 70) where "x \ y = (THE inf. is_inf x y inf)" definition - join (infixl "\" 65) where "x \ y = (THE sup. is_sup x y sup)" + join (infixl \\\ 65) where "x \ y = (THE sup. is_sup x y sup)" lemma %invisible meet_equality [elim?]: "is_inf x y i \ x \ y = i" proof (unfold meet_def)