diff -r 46f59511b7bb -r d97fdabd9e2b src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Fri Sep 20 19:07:10 2024 +0200 +++ b/src/HOL/Algebra/Coset.thy Fri Sep 20 19:51:08 2024 +0200 @@ -11,23 +11,23 @@ section \Cosets and Quotient Groups\ definition - r_coset :: "[_, 'a set, 'a] \ 'a set" (infixl "#>\" 60) + r_coset :: "[_, 'a set, 'a] \ 'a set" (infixl \#>\\ 60) where "H #>\<^bsub>G\<^esub> a = (\h\H. {h \\<^bsub>G\<^esub> a})" definition - l_coset :: "[_, 'a, 'a set] \ 'a set" (infixl "<#\" 60) + l_coset :: "[_, 'a, 'a set] \ 'a set" (infixl \<#\\ 60) where "a <#\<^bsub>G\<^esub> H = (\h\H. {a \\<^bsub>G\<^esub> h})" definition - RCOSETS :: "[_, 'a set] \ ('a set)set" ("rcosets\ _" [81] 80) + RCOSETS :: "[_, 'a set] \ ('a set)set" (\rcosets\ _\ [81] 80) where "rcosets\<^bsub>G\<^esub> H = (\a\carrier G. {H #>\<^bsub>G\<^esub> a})" definition - set_mult :: "[_, 'a set ,'a set] \ 'a set" (infixl "<#>\" 60) + set_mult :: "[_, 'a set ,'a set] \ 'a set" (infixl \<#>\\ 60) where "H <#>\<^bsub>G\<^esub> K = (\h\H. \k\K. {h \\<^bsub>G\<^esub> k})" definition - SET_INV :: "[_,'a set] \ 'a set" ("set'_inv\ _" [81] 80) + SET_INV :: "[_,'a set] \ 'a set" (\set'_inv\ _\ [81] 80) where "set_inv\<^bsub>G\<^esub> H = (\h\H. {inv\<^bsub>G\<^esub> h})" @@ -35,7 +35,7 @@ assumes coset_eq: "(\x \ carrier G. H #> x = x <# H)" abbreviation - normal_rel :: "['a set, ('a, 'b) monoid_scheme] \ bool" (infixl "\" 60) where + normal_rel :: "['a set, ('a, 'b) monoid_scheme] \ bool" (infixl \\\ 60) where "H \ G \ normal H G" lemma (in comm_group) subgroup_imp_normal: "subgroup A G \ A \ G" @@ -659,7 +659,7 @@ subsubsection\An Equivalence Relation\ definition - r_congruent :: "[('a,'b)monoid_scheme, 'a set] \ ('a*'a)set" ("rcong\ _") + r_congruent :: "[('a,'b)monoid_scheme, 'a set] \ ('a*'a)set" (\rcong\ _\) where "rcong\<^bsub>G\<^esub> H = {(x,y). x \ carrier G \ y \ carrier G \ inv\<^bsub>G\<^esub> x \\<^bsub>G\<^esub> y \ H}" @@ -961,7 +961,7 @@ subsection \Quotient Groups: Factorization of a Group\ definition - FactGroup :: "[('a,'b) monoid_scheme, 'a set] \ ('a set) monoid" (infixl "Mod" 65) + FactGroup :: "[('a,'b) monoid_scheme, 'a set] \ ('a set) monoid" (infixl \Mod\ 65) \ \Actually defined for groups rather than monoids\ where "FactGroup G H = \carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\"