diff -r 46f59511b7bb -r d97fdabd9e2b src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Fri Sep 20 19:07:10 2024 +0200 +++ b/src/HOL/Algebra/Group.thy Fri Sep 20 19:51:08 2024 +0200 @@ -18,11 +18,11 @@ \ record 'a monoid = "'a partial_object" + - mult :: "['a, 'a] \ 'a" (infixl "\\" 70) - one :: 'a ("\\") + mult :: "['a, 'a] \ 'a" (infixl \\\\ 70) + one :: 'a (\\\\) definition - m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\ _" [81] 80) + m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" (\inv\ _\ [81] 80) where "inv\<^bsub>G\<^esub> x = (THE y. y \ carrier G \ x \\<^bsub>G\<^esub> y = \\<^bsub>G\<^esub> \ y \\<^bsub>G\<^esub> x = \\<^bsub>G\<^esub>)" definition @@ -353,7 +353,7 @@ subsection \Power\ consts - pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr "[^]\" 75) + pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr \[^]\\ 75) overloading nat_pow == "pow :: [_, 'a, nat] => 'a" begin @@ -793,7 +793,7 @@ subsection \Direct Products\ definition - DirProd :: "_ \ _ \ ('a \ 'b) monoid" (infixr "\\" 80) where + DirProd :: "_ \ _ \ ('a \ 'b) monoid" (infixr \\\\ 80) where "G \\ H = \carrier = carrier G \ carrier H, mult = (\(g, h) (g', h'). (g \\<^bsub>G\<^esub> g', h \\<^bsub>H\<^esub> h')), @@ -905,7 +905,7 @@ definition iso :: "_ => _ => ('a => 'b) set" where "iso G H = {h. h \ hom G H \ bij_betw h (carrier G) (carrier H)}" -definition is_iso :: "_ \ _ \ bool" (infixr "\" 60) +definition is_iso :: "_ \ _ \ bool" (infixr \\\ 60) where "G \ H = (iso G H \ {})" definition mon where "mon G H = {f \ hom G H. inj_on f (carrier G)}"