diff -r 46f59511b7bb -r d97fdabd9e2b src/HOL/Computational_Algebra/Formal_Power_Series.thy --- a/src/HOL/Computational_Algebra/Formal_Power_Series.thy Fri Sep 20 19:07:10 2024 +0200 +++ b/src/HOL/Computational_Algebra/Formal_Power_Series.thy Fri Sep 20 19:51:08 2024 +0200 @@ -20,7 +20,7 @@ morphisms fps_nth Abs_fps by simp -notation fps_nth (infixl "$" 75) +notation fps_nth (infixl \$\ 75) lemma expand_fps_eq: "p = q \ (\n. p $ n = q $ n)" by (simp add: fps_nth_inject [symmetric] fun_eq_iff) @@ -3633,7 +3633,7 @@ subsection \Composition\ -definition fps_compose :: "'a::semiring_1 fps \ 'a fps \ 'a fps" (infixl "oo" 55) +definition fps_compose :: "'a::semiring_1 fps \ 'a fps \ 'a fps" (infixl \oo\ 55) where "a oo b = Abs_fps (\n. sum (\i. a$i * (b^i$n)) {0..n})" lemma fps_compose_nth: "(a oo b)$n = sum (\i. a$i * (b^i$n)) {0..n}" @@ -6191,11 +6191,11 @@ qed (* TODO: Figure out better notation for this thing *) -no_notation fps_nth (infixl "$" 75) +no_notation fps_nth (infixl \$\ 75) bundle fps_notation begin -notation fps_nth (infixl "$" 75) +notation fps_nth (infixl \$\ 75) end end