diff -r 46f59511b7bb -r d97fdabd9e2b src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Fri Sep 20 19:07:10 2024 +0200 +++ b/src/HOL/Probability/Information.thy Fri Sep 20 19:51:08 2024 +0200 @@ -446,7 +446,7 @@ qed abbreviation (in information_space) - mutual_information_Pow ("\'(_ ; _')") where + mutual_information_Pow (\\'(_ ; _')\) where "\(X ; Y) \ mutual_information b (count_space (X`space M)) (count_space (Y`space M)) X Y" lemma (in information_space) @@ -723,7 +723,7 @@ "entropy b S X = - KL_divergence b S (distr M S X)" abbreviation (in information_space) - entropy_Pow ("\'(_')") where + entropy_Pow (\\'(_')\) where "\(X) \ entropy b (count_space (X`space M)) X" lemma (in prob_space) distributed_RN_deriv: @@ -888,7 +888,7 @@ mutual_information b MX MZ X Z" abbreviation (in information_space) - conditional_mutual_information_Pow ("\'( _ ; _ | _ ')") where + conditional_mutual_information_Pow (\\'( _ ; _ | _ ')\) where "\(X ; Y | Z) \ conditional_mutual_information b (count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z" @@ -1420,7 +1420,7 @@ enn2real (RN_deriv T (distr M T Y) y)) \distr M (S \\<^sub>M T) (\x. (X x, Y x)))" abbreviation (in information_space) - conditional_entropy_Pow ("\'(_ | _')") where + conditional_entropy_Pow (\\'(_ | _')\) where "\(X | Y) \ conditional_entropy b (count_space (X`space M)) (count_space (Y`space M)) X Y" lemma (in information_space) conditional_entropy_generic_eq: