diff -r 9c3377b133c0 -r d982f98e0f0d src/HOL/Set.thy --- a/src/HOL/Set.thy Sat Nov 03 01:33:33 2001 +0100 +++ b/src/HOL/Set.thy Sat Nov 03 01:33:54 2001 +0100 @@ -515,7 +515,7 @@ by (blast elim: equalityE) -section {* The Powerset operator -- Pow *} +subsubsection {* The Powerset operator -- Pow *} lemma Pow_iff [iff]: "(A : Pow B) = (A <= B)" by (simp add: Pow_def) @@ -575,7 +575,7 @@ by (unfold Un_def) blast -subsection {* Binary intersection -- Int *} +subsubsection {* Binary intersection -- Int *} lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" by (unfold Int_def) blast @@ -593,7 +593,7 @@ by simp -subsection {* Set difference *} +subsubsection {* Set difference *} lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" by (unfold set_diff_def) blast @@ -905,7 +905,7 @@ done -section {* Transitivity rules for calculational reasoning *} +subsection {* Transitivity rules for calculational reasoning *} lemma forw_subst: "a = b ==> P b ==> P a" by (rule ssubst)