diff -r 917ae0ba03a2 -r db2de50de28e src/HOL/Complex.thy --- a/src/HOL/Complex.thy Thu Mar 16 13:55:29 2017 +0000 +++ b/src/HOL/Complex.thy Thu Mar 16 16:02:18 2017 +0000 @@ -207,7 +207,7 @@ "Re \ = 0" | "Im \ = 1" -lemma Complex_eq[simp]: "Complex a b = a + \ * b" +lemma Complex_eq: "Complex a b = a + \ * b" by (simp add: complex_eq_iff) lemma complex_eq: "a = Re a + \ * Im a" @@ -423,7 +423,7 @@ lemma tendsto_Complex [tendsto_intros]: "(f \ a) F \ (g \ b) F \ ((\x. Complex (f x) (g x)) \ Complex a b) F" - by (auto intro!: tendsto_intros) + unfolding Complex_eq by (auto intro!: tendsto_intros) lemma tendsto_complex_iff: "(f \ x) F \ (((\x. Re (f x)) \ Re x) F \ ((\x. Im (f x)) \ Im x) F)" @@ -819,13 +819,13 @@ qed then show ?thesis using sin_converges [of b] cos_converges [of b] - by (auto simp add: cis.ctr exp_def simp del: of_real_mult + by (auto simp add: Complex_eq cis.ctr exp_def simp del: of_real_mult intro!: sums_unique sums_add sums_mult sums_of_real) qed lemma exp_eq_polar: "exp z = exp (Re z) * cis (Im z)" unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp - by (cases z) simp + by (cases z) (simp add: Complex_eq) lemma Re_exp: "Re (exp z) = exp (Re z) * cos (Im z)" unfolding exp_eq_polar by simp @@ -837,7 +837,7 @@ by (simp add: norm_complex_def) lemma norm_exp_eq_Re [simp]: "norm (exp z) = exp (Re z)" - by (simp add: cis.code cmod_complex_polar exp_eq_polar) + by (simp add: cis.code cmod_complex_polar exp_eq_polar Complex_eq) lemma complex_exp_exists: "\a r. z = complex_of_real r * exp a" apply (insert rcis_Ex [of z]) @@ -1057,7 +1057,7 @@ and Complex_sum: "Complex (sum f s) 0 = sum (\x. Complex (f x) 0) s" and complex_of_real_def: "complex_of_real r = Complex r 0" and complex_norm: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)" - by (simp_all add: norm_complex_def field_simps complex_eq_iff Re_divide Im_divide del: Complex_eq) + by (simp_all add: norm_complex_def field_simps complex_eq_iff Re_divide Im_divide) lemma Complex_in_Reals: "Complex x 0 \ \" by (metis Reals_of_real complex_of_real_def)