diff -r 76ff0a15d202 -r dc429a5b13c4 src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Wed Mar 19 14:55:47 2014 +0000 +++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Wed Mar 19 17:06:02 2014 +0000 @@ -1203,8 +1203,8 @@ proof - have 1: "((\i. Im (f i)) ---> Im l) F" by (metis assms(1) tendsto_Im) - then have "((\i. Im (f i)) ---> 0) F" - by (smt2 Lim_eventually assms(3) assms(4) complex_is_Real_iff eventually_elim2) + then have "((\i. Im (f i)) ---> 0) F" using assms + by (metis (mono_tags, lifting) Lim_eventually complex_is_Real_iff eventually_mono) then show ?thesis using 1 by (metis 1 assms(2) complex_is_Real_iff tendsto_unique) qed @@ -1233,16 +1233,8 @@ apply (induct n, auto) by (metis dual_order.trans le_cases le_neq_implies_less norm_triangle_mono) -(*Replaces the one in Series*) -lemma summable_comparison_test: - fixes f:: "nat \ 'a::banach" - shows "summable g \ (\n. n \ N \ norm(f n) \ g n) \ summable f" -apply (auto simp: Series.summable_Cauchy) -apply (drule_tac x = e in spec, auto) -apply (rule_tac x="max N Na" in exI, auto) -by (smt2 norm_setsum_bound) -(*MOVE TO Finite_Cartesian_Product*) +(*MOVE? But not to Finite_Cartesian_Product*) lemma sums_vec_nth : assumes "f sums a" shows "(\x. f x $ i) sums a $ i" @@ -1255,23 +1247,6 @@ using assms unfolding summable_def by (blast intro: sums_vec_nth) -(*REPLACE THE ONES IN COMPLEX.THY*) -lemma Re_setsum: "Re(setsum f s) = setsum (%x. Re(f x)) s" -apply (cases "finite s") - by (induct s rule: finite_induct) auto - -lemma Im_setsum: "Im(setsum f s) = setsum (%x. Im(f x)) s" -apply (cases "finite s") - by (induct s rule: finite_induct) auto - -lemma of_real_setsum: "of_real (setsum f s) = setsum (%x. of_real(f x)) s" -apply (cases "finite s") - by (induct s rule: finite_induct) auto - -lemma of_real_setprod: "of_real (setprod f s) = setprod (%x. of_real(f x)) s" -apply (cases "finite s") - by (induct s rule: finite_induct) auto - lemma sums_Re: assumes "f sums a" shows "(\x. Re (f x)) sums Re a" @@ -1306,7 +1281,7 @@ have g: "\n. cmod (g n) = Re (g n)" using assms by (metis abs_of_nonneg in_Reals_norm) show ?thesis - apply (rule summable_comparison_test [where g = "\n. norm (g n)" and N=N]) + apply (rule summable_comparison_test' [where g = "\n. norm (g n)" and N=N]) using sg apply (auto simp: summable_def) apply (rule_tac x="Re s" in exI) @@ -1324,9 +1299,6 @@ done -(* ------------------------------------------------------------------------- *) -(* A kind of complex Taylor theorem. *) -(* ------------------------------------------------------------------------- *) lemma setsum_Suc_reindex: @@ -1334,17 +1306,8 @@ shows "setsum f {0..n} = f 0 - f (Suc n) + setsum (\i. f (Suc i)) {0..n}" by (induct n) auto -(*REPLACE THE REAL VERSIONS*) -lemma mult_left_cancel: - fixes c:: "'a::ring_no_zero_divisors" - shows "c \ 0 \ (c*a=c*b) = (a=b)" -by simp -lemma mult_right_cancel: - fixes c:: "'a::ring_no_zero_divisors" - shows "c \ 0 \ (a*c=b*c) = (a=b)" -by simp - +text{*A kind of complex Taylor theorem.*} lemma complex_taylor: assumes s: "convex s" and f: "\i x. x \ s \ i \ n \ (f i has_field_derivative f (Suc i) x) (at x within s)"